Header

UZH-Logo

Maintenance Infos

Chromosome imbalances associated with epilepsy


Schinzel, Albert; Niedrist, Dunja (2001). Chromosome imbalances associated with epilepsy. American Journal of Medical Genetics, 106(2):119-124.

Abstract

Epilepsy is among the most frequent findings in many, especially autosomal, chromosome aberrations. Its incidence, however, is very variable, and there are very few aberrations in which epilepsy is a constant finding. Even siblings and monozygotic twins with the same aberration are often discordant for seizure disorders. Similar observations can be made for congenital (major) malformations in chromosome aberrations. The common explanation is that in these instances epilepsy is not caused by the action of a single gene in single or triple dose, but is influenced by the combined action of a number of genes within and outside of the aneuploid segment. The situation is comparable to a polygenic model of inheritance. Gene mutations associated with epilepsy are known, to date, only for two disorders: the lissencephaly 1 gene in Miller-Dieker syndrome and mutations in the UBE3A gene in Angelman syndrome. Chromosome aberrations in which epilepsy is a major and consistent finding include Angelman syndrome due to loss of the maternal 15q11.2-q12 segment, tetrasomy of the maternal segment 15pter-q13 due to an additional inv dup chromosome, Miller-Dieker syndrome due to deletion of the 17p13.3 segment including the lissencephaly1 gene, ring chromosome 20, and Wolf-Hirschhorn syndrome due to deletion of at least the 4p16.3 segment.

Abstract

Epilepsy is among the most frequent findings in many, especially autosomal, chromosome aberrations. Its incidence, however, is very variable, and there are very few aberrations in which epilepsy is a constant finding. Even siblings and monozygotic twins with the same aberration are often discordant for seizure disorders. Similar observations can be made for congenital (major) malformations in chromosome aberrations. The common explanation is that in these instances epilepsy is not caused by the action of a single gene in single or triple dose, but is influenced by the combined action of a number of genes within and outside of the aneuploid segment. The situation is comparable to a polygenic model of inheritance. Gene mutations associated with epilepsy are known, to date, only for two disorders: the lissencephaly 1 gene in Miller-Dieker syndrome and mutations in the UBE3A gene in Angelman syndrome. Chromosome aberrations in which epilepsy is a major and consistent finding include Angelman syndrome due to loss of the maternal 15q11.2-q12 segment, tetrasomy of the maternal segment 15pter-q13 due to an additional inv dup chromosome, Miller-Dieker syndrome due to deletion of the 17p13.3 segment including the lissencephaly1 gene, ring chromosome 20, and Wolf-Hirschhorn syndrome due to deletion of at least the 4p16.3 segment.

Statistics

Citations

Dimensions.ai Metrics
46 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 26 Nov 2020
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not_refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Genetics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Genetics
Health Sciences > Genetics (clinical)
Language:English
Date:2001
Deposited On:26 Nov 2020 13:36
Last Modified:27 Nov 2020 21:01
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0148-7299
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/ajmg.1576
PubMed ID:11579431

Download

Closed Access: Download allowed only for UZH members

Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 107kB
View at publisher