Header

UZH-Logo

Maintenance Infos

The value of intraoperative MRI in recurrent intracranial tumor surgery


Wang, Sophie S; Selge, Friederike; Sebök, Martina; Scheffler, Pierre; Yang, Yang; Brandi, Giovanna; Winklhofer, Sebastian; Bozinov, Oliver (2020). The value of intraoperative MRI in recurrent intracranial tumor surgery. Journal of neurosurgery:Epub ahead of print.

Abstract

OBJECTIVE

Identifying tumor remnants in previously operated tumor lesions remains a challenge. Intraoperative MRI (ioMRI) helps the neurosurgeon to reorient and update image guidance during surgery. The purpose of this study was to analyze whether ioMRI is more efficient in detecting tumor remnants in the surgery of recurrent lesions compared with primary surgery.
METHODS

All consecutive patients undergoing elective intracranial tumor surgery between 2013 and 2018 at the authors’ institution were included in this retrospective cohort study. The cohort was divided into two groups: re-craniotomy and primary craniotomy. In contrast-enhancing tumors, tumor suspicion in ioMRI was defined as contrast enhancement in T1-weighted imaging. In non–contrast-enhancing tumors, tumor suspicion was defined as hypointensity in T1-weighted imaging and hyperintensity in T2-weighted imaging and FLAIR. In cases in which the ioMRI tumor suspicion was a false positive and not confirmed during in situ inspection by the neurosurgeon, the signal was defined as a tumor-imitating ioMRI signal (TIM). Descriptive statistics were performed.
RESULTS

A total of 214 tumor surgeries met the inclusion criteria. The re-craniotomy group included 89 surgeries, and the primary craniotomy group included 123 surgeries. Initial complete resection after ioMRI was less frequent in the re-craniotomy group than in the primary craniotomy group, but this was not a statistically significant difference. Radiological suspicion of tumor remnants in ioMRI was present in 78% of re-craniotomy surgeries and 69% of primary craniotomy surgeries. The incidence of false-positive TIMs was significantly higher in the re-craniotomy group (n = 11, 12%) compared with the primary craniotomy group (n = 5, 4%; p = 0.015), and in contrast-enhancing tumors was related to hemorrhages in situ (n = 9).
CONCLUSIONS

A history of previous surgery in contrast-enhancing tumors made correct identification of tumor remnants in ioMRI more difficult, with a higher rate of false-positive ioMRI signals in the re-craniotomy group. The majority of TIMs were associated with the inability to distinguish contrast enhancement from hyperacute hemorrhage. The addition of a specific sequence in ioMRI to further differentiate both should be investigated in future studies.

Abstract

OBJECTIVE

Identifying tumor remnants in previously operated tumor lesions remains a challenge. Intraoperative MRI (ioMRI) helps the neurosurgeon to reorient and update image guidance during surgery. The purpose of this study was to analyze whether ioMRI is more efficient in detecting tumor remnants in the surgery of recurrent lesions compared with primary surgery.
METHODS

All consecutive patients undergoing elective intracranial tumor surgery between 2013 and 2018 at the authors’ institution were included in this retrospective cohort study. The cohort was divided into two groups: re-craniotomy and primary craniotomy. In contrast-enhancing tumors, tumor suspicion in ioMRI was defined as contrast enhancement in T1-weighted imaging. In non–contrast-enhancing tumors, tumor suspicion was defined as hypointensity in T1-weighted imaging and hyperintensity in T2-weighted imaging and FLAIR. In cases in which the ioMRI tumor suspicion was a false positive and not confirmed during in situ inspection by the neurosurgeon, the signal was defined as a tumor-imitating ioMRI signal (TIM). Descriptive statistics were performed.
RESULTS

A total of 214 tumor surgeries met the inclusion criteria. The re-craniotomy group included 89 surgeries, and the primary craniotomy group included 123 surgeries. Initial complete resection after ioMRI was less frequent in the re-craniotomy group than in the primary craniotomy group, but this was not a statistically significant difference. Radiological suspicion of tumor remnants in ioMRI was present in 78% of re-craniotomy surgeries and 69% of primary craniotomy surgeries. The incidence of false-positive TIMs was significantly higher in the re-craniotomy group (n = 11, 12%) compared with the primary craniotomy group (n = 5, 4%; p = 0.015), and in contrast-enhancing tumors was related to hemorrhages in situ (n = 9).
CONCLUSIONS

A history of previous surgery in contrast-enhancing tumors made correct identification of tumor remnants in ioMRI more difficult, with a higher rate of false-positive ioMRI signals in the re-craniotomy group. The majority of TIMs were associated with the inability to distinguish contrast enhancement from hyperacute hemorrhage. The addition of a specific sequence in ioMRI to further differentiate both should be investigated in future studies.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Intensive Care Medicine
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:Surgery, Clinical Neurology
Language:English
Date:1 October 2020
Deposited On:26 Nov 2020 15:41
Last Modified:26 Nov 2020 15:42
Publisher:American Association of Neurological Surgeons
ISSN:0022-3085
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3171/2020.6.jns20982

Download

Full text not available from this repository.
View at publisher

Get full-text in a library