Header

UZH-Logo

Maintenance Infos

EDGE: the mass–metallicity relation as a critical test of galaxy formation physics


Agertz, Oscar; Pontzen, Andrew; Read, Justin I; Rey, Martin P; Orkney, Matthew; Rosdahl, Joakim; Teyssier, Romain; Verbeke, Robbert; Kretschmer, Michael; Nickerson, Sarah (2020). EDGE: the mass–metallicity relation as a critical test of galaxy formation physics. Monthly Notices of the Royal Astronomical Society, 491(2):1656-1672.

Abstract

We introduce the ‘Engineering Dwarfs at Galaxy Formation’s Edge’ (EDGE) project to study the cosmological formation and evolution of the smallest galaxies in the Universe. In this first paper, we explore the effects of resolution and sub-grid physics on a single low-mass halo ($M_{\rm halo}=10^{9}{\, \rm M}_\odot$), simulated to redshift z = 0 at a mass and spatial resolution of $\sim 20{\, \rm M}_\odot$ and ∼3 pc. We consider different star formation prescriptions, supernova feedback strengths, and on-the-fly radiative transfer (RT). We show that RT changes the mode of galactic self-regulation at this halo mass, suppressing star formation by causing the interstellar and circumgalactic gas to remain predominantly warm (∼104 K) even before cosmic reionization. By contrast, without RT, star formation regulation occurs only through starbursts and their associated vigorous galactic outflows. In spite of this difference, the entire simulation suite (with the exception of models without any feedback) matches observed dwarf galaxy sizes, velocity dispersions, V-band magnitudes, and dynamical mass-to-light-ratios. This is because such structural scaling relations are predominantly set by the host dark matter halo, with the remaining model-to-model variation being smaller than the observational scatter. We find that only the stellar mass–metallicity relation differentiates the galaxy formation models. Explosive feedback ejects more metals from the dwarf, leading to a lower metallicity at a fixed stellar mass. We conclude that the stellar mass–metallicity relation of the very smallest galaxies provides a unique constraint on galaxy formation physics.

Abstract

We introduce the ‘Engineering Dwarfs at Galaxy Formation’s Edge’ (EDGE) project to study the cosmological formation and evolution of the smallest galaxies in the Universe. In this first paper, we explore the effects of resolution and sub-grid physics on a single low-mass halo ($M_{\rm halo}=10^{9}{\, \rm M}_\odot$), simulated to redshift z = 0 at a mass and spatial resolution of $\sim 20{\, \rm M}_\odot$ and ∼3 pc. We consider different star formation prescriptions, supernova feedback strengths, and on-the-fly radiative transfer (RT). We show that RT changes the mode of galactic self-regulation at this halo mass, suppressing star formation by causing the interstellar and circumgalactic gas to remain predominantly warm (∼104 K) even before cosmic reionization. By contrast, without RT, star formation regulation occurs only through starbursts and their associated vigorous galactic outflows. In spite of this difference, the entire simulation suite (with the exception of models without any feedback) matches observed dwarf galaxy sizes, velocity dispersions, V-band magnitudes, and dynamical mass-to-light-ratios. This is because such structural scaling relations are predominantly set by the host dark matter halo, with the remaining model-to-model variation being smaller than the observational scatter. We find that only the stellar mass–metallicity relation differentiates the galaxy formation models. Explosive feedback ejects more metals from the dwarf, leading to a lower metallicity at a fixed stellar mass. We conclude that the stellar mass–metallicity relation of the very smallest galaxies provides a unique constraint on galaxy formation physics.

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 15 Feb 2021
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:11 January 2020
Deposited On:15 Feb 2021 11:05
Last Modified:16 Feb 2021 21:00
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stz3053

Download

Green Open Access

Download PDF  'EDGE: the mass–metallicity relation as a critical test of galaxy formation physics'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)