Header

UZH-Logo

Maintenance Infos

Pulp-derived exosomes in a fibrin-based regenerative root filling material


Ivica, Anja; Ghayor, Chafik; Zehnder, Matthias; Valdec, Silvio; Weber, Franz E (2020). Pulp-derived exosomes in a fibrin-based regenerative root filling material. Journal of Clinical Medicine, 9(2):491.

Abstract

Regenerative endodontics has been described as a paradigm shift in dentistry, despite its current limitation to immature teeth and reparative rather than regenerative outcomes. Cell-free treatments are favored because of regulatory issues. However, the recruitment of host-derived stem cells to the desired site remains challenging. We investigated whether dental pulp-derived exosomes, which are extracellular vesicles that contain proteins, lipids, RNA, and DNA and thus mirror their parental cells, may be used for this purpose. The use of exosomes may present appreciable advantages over the direct use of transplanted stem cells due to a higher safety profile, easier isolation, preservation, and handling. Here we harvested exosomes from a cultured third-molar pulp cell and assessed them by transmission electron microscopy and Western blotting. Human mesenchymal stem cells (MSCs) were exposed to these exosomes to assess exosome uptake, cell migration, and proliferation. In addition, a fibrin gel (i.e., a diluted fibrin sealant), was assessed as a delivery system for the exosomes. Our results show that exosomes attracted MSCs, and the fibrin gel enhanced their effect. Moreover, exosomes improved the proliferation of MSCs. Therefore, we propose that pulp-derived exosomes in combination with a fibrin gel could be a powerful combination for clinical translation towards improved cell-free regenerative endodontics and thus represent a new way to fill dental hard tissues.

Abstract

Regenerative endodontics has been described as a paradigm shift in dentistry, despite its current limitation to immature teeth and reparative rather than regenerative outcomes. Cell-free treatments are favored because of regulatory issues. However, the recruitment of host-derived stem cells to the desired site remains challenging. We investigated whether dental pulp-derived exosomes, which are extracellular vesicles that contain proteins, lipids, RNA, and DNA and thus mirror their parental cells, may be used for this purpose. The use of exosomes may present appreciable advantages over the direct use of transplanted stem cells due to a higher safety profile, easier isolation, preservation, and handling. Here we harvested exosomes from a cultured third-molar pulp cell and assessed them by transmission electron microscopy and Western blotting. Human mesenchymal stem cells (MSCs) were exposed to these exosomes to assess exosome uptake, cell migration, and proliferation. In addition, a fibrin gel (i.e., a diluted fibrin sealant), was assessed as a delivery system for the exosomes. Our results show that exosomes attracted MSCs, and the fibrin gel enhanced their effect. Moreover, exosomes improved the proliferation of MSCs. Therefore, we propose that pulp-derived exosomes in combination with a fibrin gel could be a powerful combination for clinical translation towards improved cell-free regenerative endodontics and thus represent a new way to fill dental hard tissues.

Statistics

Citations

Dimensions.ai Metrics
30 citations in Web of Science®
30 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

32 downloads since deposited on 04 Dec 2020
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Conservative and Preventive Dentistry
04 Faculty of Medicine > Center for Dental Medicine > Clinic of Cranio-Maxillofacial Surgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > General Medicine
Language:English
Date:11 February 2020
Deposited On:04 Dec 2020 16:02
Last Modified:24 Apr 2024 01:45
Publisher:MDPI Publishing
ISSN:2077-0383
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/jcm9020491
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)