Header

UZH-Logo

Maintenance Infos

Indoor mapping and modeling by parsing floor plan images


Wu, Yijie; Shang, Jianga; Chen, Pan; Zlatanova, Sisi; Hu, Xuke; Zhou, Zhiyong (2020). Indoor mapping and modeling by parsing floor plan images. International Journal of Geographical Information Science:Epub ahead of print.

Abstract

A large proportion of indoor spatial data is generated by parsing floor plans. However, a mature and automatic solution for generating high-quality building elements (e.g., walls and doors) and space partitions (e.g., rooms) is still lacking. In this study, we present a two-stage approach to indoor mapping and modeling (IMM) from floor plan images. The first stage vectorizes the building elements on the floor plan images and the second stage repairs the topological inconsistencies between the building elements, separates indoor spaces, and generates indoor maps and models. To reduce the shape complexity of indoor boundary elements, i.e., walls and openings, we harness the regularity of the boundary elements and extract them as rectangles in the first stage. Furthermore, to resolve the overlaps and gaps of the vectorized results, we propose an optimization model that adjusts the rectangle vertex coordinates to conform to the topological constraints. Experiments demonstrate that our approach achieves a considerable improvement in room detection without conforming to Manhattan World Assumption. Our approach also outputs instance-separate walls with consistent topology, which enables direct modeling into Industry Foundation Classes (IFC) or City Geography Markup Language (CityGML).

Abstract

A large proportion of indoor spatial data is generated by parsing floor plans. However, a mature and automatic solution for generating high-quality building elements (e.g., walls and doors) and space partitions (e.g., rooms) is still lacking. In this study, we present a two-stage approach to indoor mapping and modeling (IMM) from floor plan images. The first stage vectorizes the building elements on the floor plan images and the second stage repairs the topological inconsistencies between the building elements, separates indoor spaces, and generates indoor maps and models. To reduce the shape complexity of indoor boundary elements, i.e., walls and openings, we harness the regularity of the boundary elements and extract them as rectangles in the first stage. Furthermore, to resolve the overlaps and gaps of the vectorized results, we propose an optimization model that adjusts the rectangle vertex coordinates to conform to the topological constraints. Experiments demonstrate that our approach achieves a considerable improvement in room detection without conforming to Manhattan World Assumption. Our approach also outputs instance-separate walls with consistent topology, which enables direct modeling into Industry Foundation Classes (IFC) or City Geography Markup Language (CityGML).

Statistics

Citations

Altmetrics

Downloads

1 download since deposited on 04 Dec 2020
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Information Systems
Social Sciences & Humanities > Geography, Planning and Development
Social Sciences & Humanities > Library and Information Sciences
Uncontrolled Keywords:Geography, Planning and Development, Library and Information Sciences, Information Systems
Language:English
Date:8 July 2020
Deposited On:04 Dec 2020 16:13
Last Modified:05 Dec 2020 21:01
Publisher:Taylor & Francis
ISSN:1365-8816
OA Status:Closed
Publisher DOI:https://doi.org/10.1080/13658816.2020.1781130

Download

Closed Access: Download allowed only for UZH members

Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 6MB
View at publisher