Header

UZH-Logo

Maintenance Infos

Methylation in pericytes after acute injury promotes chronic kidney disease


Chou, Yu-Hsiang; Pan, Szu-Yu; Shao, Yu-Han; Shih, Hong-Mou; Wei, Shi-Yao; Lai, Chun-Fu; Chiang, Wen-Chih; Schrimpf, Claudia; Yang, Kai-Chien; Lai, Liang-Chuan; Chen, Yung-Ming; Chu, Tzong-Shinn; Lin, Shuei-Liong (2020). Methylation in pericytes after acute injury promotes chronic kidney disease. Journal of Clinical Investigation, 130(9):4845-4857.

Abstract

The origin and fate of renal myofibroblasts is not clear after acute kidney injury (AKI). Here, we demonstrate that myofibroblasts were activated from quiescent pericytes (qPericytes) and the cell numbers increased after ischemia/reperfusion injury-induced AKI (IRI-AKI). Myofibroblasts underwent apoptosis during renal recovery but one-fifth of them survived in the recovered kidneys on day 28 after IRI-AKI and their cell numbers increased again after day 56. Microarray data showed the distinctive gene expression patterns of qPericytes, activated pericytes (aPericytes, myofibroblasts), and inactivated pericytes (iPericytes) isolated from kidneys before, on day 7, and on day 28 after IRI-AKI. Hypermethylation of the Acta2 repressor Ybx2 during IRI-AKI resulted in epigenetic modification of iPericytes to promote the transition to chronic kidney disease (CKD) and aggravated fibrogenesis induced by a second AKI induced by adenine. Mechanistically, transforming growth factor-β1 decreased the binding of YBX2 to the promoter of Acta2 and induced Ybx2 hypermethylation, thereby increasing α-smooth muscle actin expression in aPericytes. Demethylation by 5-azacytidine recovered the microvascular stabilizing function of aPericytes, reversed the profibrotic property of iPericytes, prevented AKI-CKD transition, and attenuated fibrogenesis induced by a second adenine-AKI. In conclusion, intervention to erase hypermethylation of pericytes after AKI provides a strategy to stop the transition to CKD.

Abstract

The origin and fate of renal myofibroblasts is not clear after acute kidney injury (AKI). Here, we demonstrate that myofibroblasts were activated from quiescent pericytes (qPericytes) and the cell numbers increased after ischemia/reperfusion injury-induced AKI (IRI-AKI). Myofibroblasts underwent apoptosis during renal recovery but one-fifth of them survived in the recovered kidneys on day 28 after IRI-AKI and their cell numbers increased again after day 56. Microarray data showed the distinctive gene expression patterns of qPericytes, activated pericytes (aPericytes, myofibroblasts), and inactivated pericytes (iPericytes) isolated from kidneys before, on day 7, and on day 28 after IRI-AKI. Hypermethylation of the Acta2 repressor Ybx2 during IRI-AKI resulted in epigenetic modification of iPericytes to promote the transition to chronic kidney disease (CKD) and aggravated fibrogenesis induced by a second AKI induced by adenine. Mechanistically, transforming growth factor-β1 decreased the binding of YBX2 to the promoter of Acta2 and induced Ybx2 hypermethylation, thereby increasing α-smooth muscle actin expression in aPericytes. Demethylation by 5-azacytidine recovered the microvascular stabilizing function of aPericytes, reversed the profibrotic property of iPericytes, prevented AKI-CKD transition, and attenuated fibrogenesis induced by a second adenine-AKI. In conclusion, intervention to erase hypermethylation of pericytes after AKI provides a strategy to stop the transition to CKD.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 10 Dec 2020
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Vascular Surgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > General Medicine
Language:English
Date:1 September 2020
Deposited On:10 Dec 2020 06:24
Last Modified:01 Jan 2021 21:03
Publisher:American Society for Clinical Investigation
ISSN:0021-9738
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1172/JCI135773
PubMed ID:32749240

Download

Hybrid Open Access

Download PDF  'Methylation in pericytes after acute injury promotes chronic kidney disease'.
Preview
Content: Published Version
Filetype: PDF
Size: 11MB
View at publisher