Header

UZH-Logo

Maintenance Infos

TOI-824 b: A New Planet on the Lower Edge of the Hot Neptune Desert


Abstract

We report the detection of a transiting hot Neptune exoplanet orbiting TOI-824 (SCR J1448-5735), a nearby (d = 64 pc) K4V star, using data from the Transiting Exoplanet Survey Satellite. The newly discovered planet has a radius R p = 2.93 ± 0.20 ${R}_{\oplus }$ and an orbital period of 1.393 days. Radial velocity measurements using the Planet Finder Spectrograph and the High Accuracy Radial velocity Planet Searcher spectrograph confirm the existence of the planet, and we estimate its mass to be 18.47 ± 1.84 ${M}_{\oplus }$. The planet's mean density is ${\rho }_{{\rm{p}}}$ = 4.03${}_{-0.78}^{+0.98}$ ${\rm{g}}\,{\mathrm{cm}}^{-3}$, making it more than twice as dense as Neptune. TOI-824 b's high equilibrium temperature makes the planet likely to have a cloud-free atmosphere, and thus it is an excellent candidate for follow-up atmospheric studies. The detectability of TOI-824 b's atmosphere from both ground and space is promising and could lead to the detailed characterization of the most irradiated small planet at the edge of the hot Neptune desert that has retained its atmosphere to date.

Abstract

We report the detection of a transiting hot Neptune exoplanet orbiting TOI-824 (SCR J1448-5735), a nearby (d = 64 pc) K4V star, using data from the Transiting Exoplanet Survey Satellite. The newly discovered planet has a radius R p = 2.93 ± 0.20 ${R}_{\oplus }$ and an orbital period of 1.393 days. Radial velocity measurements using the Planet Finder Spectrograph and the High Accuracy Radial velocity Planet Searcher spectrograph confirm the existence of the planet, and we estimate its mass to be 18.47 ± 1.84 ${M}_{\oplus }$. The planet's mean density is ${\rho }_{{\rm{p}}}$ = 4.03${}_{-0.78}^{+0.98}$ ${\rm{g}}\,{\mathrm{cm}}^{-3}$, making it more than twice as dense as Neptune. TOI-824 b's high equilibrium temperature makes the planet likely to have a cloud-free atmosphere, and thus it is an excellent candidate for follow-up atmospheric studies. The detectability of TOI-824 b's atmosphere from both ground and space is promising and could lead to the detailed characterization of the most irradiated small planet at the edge of the hot Neptune desert that has retained its atmosphere to date.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, not_refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:4 September 2020
Deposited On:15 Feb 2021 09:00
Last Modified:16 Feb 2021 21:00
Publisher:IOP Publishing
ISSN:0004-6256
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3847/1538-3881/abac0c

Download

Full text not available from this repository.
View at publisher

Get full-text in a library