Abstract
In this paper we establish a general dynamical Central Limit Theorem (CLT) for group actions which are exponentially mixing of all orders. In particular, the main result applies to Cartan flows on finite-volume quotients of simple Lie groups. Our proof uses a novel relativization of the classical method of cumulants, which should be of independent interest. As a sample application of our techniques, we show that the CLT holds along lacunary samples of the horocycle flow on finite-area hyperbolic surfaces applied to any smooth compactly supported function.