Header

UZH-Logo

Maintenance Infos

The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants


Abstract

The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional connectome of early life spanning 20–45 weeks post-menstrual age. This is being achieved through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects combined with the development of optimised pre-processing pipelines. In this paper we present an automated and robust pipeline to minimally pre-process highly confounded neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. The pipeline has been designed to specifically address the challenges that neonatal data presents including low and variable contrast and high levels of head motion. We provide a detailed description and evaluation of the pipeline which includes integrated slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust multimodal registration approach, bespoke ICA-based denoising, and an automated QC framework. We assess these components on a large cohort of dHCP subjects and demonstrate that processing refinements integrated into the pipeline provide substantial reduction in movement related distortions, resulting in significant improvements in SNR, and detection of high quality RSNs from neonates.

Abstract

The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional connectome of early life spanning 20–45 weeks post-menstrual age. This is being achieved through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects combined with the development of optimised pre-processing pipelines. In this paper we present an automated and robust pipeline to minimally pre-process highly confounded neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. The pipeline has been designed to specifically address the challenges that neonatal data presents including low and variable contrast and high levels of head motion. We provide a detailed description and evaluation of the pipeline which includes integrated slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust multimodal registration approach, bespoke ICA-based denoising, and an automated QC framework. We assess these components on a large cohort of dHCP subjects and demonstrate that processing refinements integrated into the pipeline provide substantial reduction in movement related distortions, resulting in significant improvements in SNR, and detection of high quality RSNs from neonates.

Statistics

Citations

Dimensions.ai Metrics
45 citations in Web of Science®
46 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

33 downloads since deposited on 08 Jan 2021
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Scopus Subject Areas:Life Sciences > Neurology
Life Sciences > Cognitive Neuroscience
Uncontrolled Keywords:Cognitive Neuroscience, Neurology
Language:English
Date:1 December 2020
Deposited On:08 Jan 2021 12:09
Last Modified:24 May 2024 01:45
Publisher:Elsevier
ISSN:1053-8119
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2020.117303
PubMed ID:32866666
Project Information:
  • : FunderFP7
  • : Grant ID319456
  • : Project TitleDHCP - The Developing Human Connectome Project
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)