Header

UZH-Logo

Maintenance Infos

Crowd-based observations of riverine macroplastic pollution


van Emmerik, Tim; Seibert, Jan; Strobl, Barbara; Etter, Simon; den Oudendammer, Tijmen; Rutten, Martine; bin Ab Razak, Mohd Shahrizal; van Meerveld, Ilja (2020). Crowd-based observations of riverine macroplastic pollution. Frontiers in Earth Science, 8:298.

Abstract

Macroplastic pollution (> 0.5 cm) negatively impacts aquatic life and threatens human livelihood on land, in oceans and river systems. Reliable information on the origin, fate and pathways of plastic in river systems is required to optimize prevention, mitigation and reduction strategies. Yet, accurate and long-term data on plastic transport are still lacking. Current macroplastic monitoring strategies involve labor intensive sampling methods, require investment in infrastructure, and are therefore infrequent. Crowd-based observations of riverine macroplastic pollution may potentially provide frequent cost-effective data collection over a large geographical range. We extended the CrowdWater citizen science app for hydrological observations with a module for observations of plastic in rivers. In this paper, we demonstrate the potential of crowd-based observations of floating macroplastic and macroplastic on riverbanks. We analyzed data from two case studies: (1) floating plastic measured in the Klang (Malaysia), and (2) plastic on riverbanks along the Rhine (the Netherlands). Crowd-based observations of floating plastic in the Klang yield similar estimates of plastic transport (2,000–3,000 items h−1), cross-sectional distribution (3–7 percent point difference) and polymer categories (0–6 percent point difference) as reference observations. It also highlighted the high temporal variation in riverine plastic transport. The riverbank observations provided the first data of macroplastic pollution on the most downstream stretch of the Rhine, revealing peaks close to urban areas and an increasing plastic density toward the river mouth. The mean riverbank density estimates are also similar for the crowd-based and reference methods (573–1,033 items km−1). These results highlight the value of including crowd-based riverine macroplastic observations in future monitoring strategies. Crowd-based observations may provide reliable estimations of plastic transport, density, spatiotemporal variation and composition for a larger number of locations than conventional methods.

Abstract

Macroplastic pollution (> 0.5 cm) negatively impacts aquatic life and threatens human livelihood on land, in oceans and river systems. Reliable information on the origin, fate and pathways of plastic in river systems is required to optimize prevention, mitigation and reduction strategies. Yet, accurate and long-term data on plastic transport are still lacking. Current macroplastic monitoring strategies involve labor intensive sampling methods, require investment in infrastructure, and are therefore infrequent. Crowd-based observations of riverine macroplastic pollution may potentially provide frequent cost-effective data collection over a large geographical range. We extended the CrowdWater citizen science app for hydrological observations with a module for observations of plastic in rivers. In this paper, we demonstrate the potential of crowd-based observations of floating macroplastic and macroplastic on riverbanks. We analyzed data from two case studies: (1) floating plastic measured in the Klang (Malaysia), and (2) plastic on riverbanks along the Rhine (the Netherlands). Crowd-based observations of floating plastic in the Klang yield similar estimates of plastic transport (2,000–3,000 items h−1), cross-sectional distribution (3–7 percent point difference) and polymer categories (0–6 percent point difference) as reference observations. It also highlighted the high temporal variation in riverine plastic transport. The riverbank observations provided the first data of macroplastic pollution on the most downstream stretch of the Rhine, revealing peaks close to urban areas and an increasing plastic density toward the river mouth. The mean riverbank density estimates are also similar for the crowd-based and reference methods (573–1,033 items km−1). These results highlight the value of including crowd-based riverine macroplastic observations in future monitoring strategies. Crowd-based observations may provide reliable estimations of plastic transport, density, spatiotemporal variation and composition for a larger number of locations than conventional methods.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

19 downloads since deposited on 18 Dec 2020
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > General Earth and Planetary Sciences
Language:English
Date:12 August 2020
Deposited On:18 Dec 2020 16:02
Last Modified:28 Jan 2021 21:36
Publisher:Frontiers Research Foundation
ISSN:2296-6463
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/feart.2020.00298

Download

Gold Open Access

Download PDF  'Crowd-based observations of riverine macroplastic pollution'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 9MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)