Header

UZH-Logo

Maintenance Infos

Deep Learning-powered Iterative Combinatorial Auctions


Weissteiner, Jakob; Seuken, Sven (2020). Deep Learning-powered Iterative Combinatorial Auctions. In: Proceedings of the 34th AAAI Conference of Artificial Intelligence, New York City, United States of America, 7 February 2020 - 12 February 2020, 2284-2293.

Abstract

In this paper, we study the design of deep learning-powered iterative combinatorial auctions (ICAs). We build on prior work where preference elicitation was done via kernelized support vector regressions (SVRs). However, the SVR-based approach has limitations because it requires solving a machine learning (ML)-based winner determination problem (WDP). With expressive kernels (like gaussians), the ML-based WDP cannot be solved for large domains. While linear or quadratic kernels have better computational scalability, these kernels have limited expressiveness. In this work, we address these shortcomings by using deep neural networks (DNNs) instead of SVRs. We first show how the DNN-based WDP can be reformulated into a mixed integer program (MIP). Second, we experimentally compare the prediction performance of DNNs against SVRs. Third, we present experimental evaluations in two medium-sized domains which show that even ICAs based on relatively small-sized DNNs lead to higher economic efficiency than ICAs based on kernelized SVRs. Finally, we show that our DNN-powered ICA also scales well to very large CA domains.

Abstract

In this paper, we study the design of deep learning-powered iterative combinatorial auctions (ICAs). We build on prior work where preference elicitation was done via kernelized support vector regressions (SVRs). However, the SVR-based approach has limitations because it requires solving a machine learning (ML)-based winner determination problem (WDP). With expressive kernels (like gaussians), the ML-based WDP cannot be solved for large domains. While linear or quadratic kernels have better computational scalability, these kernels have limited expressiveness. In this work, we address these shortcomings by using deep neural networks (DNNs) instead of SVRs. We first show how the DNN-based WDP can be reformulated into a mixed integer program (MIP). Second, we experimentally compare the prediction performance of DNNs against SVRs. Third, we present experimental evaluations in two medium-sized domains which show that even ICAs based on relatively small-sized DNNs lead to higher economic efficiency than ICAs based on kernelized SVRs. Finally, we show that our DNN-powered ICA also scales well to very large CA domains.

Statistics

Downloads

6 downloads since deposited on 22 Dec 2020
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:12 February 2020
Deposited On:22 Dec 2020 13:56
Last Modified:23 Dec 2020 04:39
Publisher:AAAI
OA Status:Green
Other Identification Number:merlin-id:20211

Download

Green Open Access

Download PDF  'Deep Learning-powered Iterative Combinatorial Auctions'.
Preview
Content: Published Version
Filetype: PDF
Size: 590kB