Abstract
Distinct regions in the left inferior frontal gyrus (IFG) preferentially support the processing of different word-types (e.g., real words, pseudowords) and tasks (e.g., lexical decisions, phonological decisions) in visual word recognition. However, the functional connectivity underlying the task-related specialisation of regions in the left IFG is not yet well understood. In this study we investigated the neural mechanisms driving the interaction of WORD-TYPE (real word vs. pseudoword) and TASK (lexical vs. phonological decision) in Brodmann's area (BA) 45 in the left IFG using dynamic causal modelling (DCM). Four different models were compared, all of which included left BA44, left BA45, and left inferior temporal gyrus (ITG). In each model, the visual presentation of words and pseudowords is assumed to directly evoke activity in the ITG and is then thought to be subsequently propagated to BA45 and to BA44 via direct intrinsic connections. The models differed with regard to which connections were modulated by the different tasks. Both tasks were assumed to either modulate the ITG_BA45 connection (Model #1), or the BA44_BA45 connection (Model #2), or both connections in parallel (Model #3). In Model #4 lexical decisions modulated the ITG_BA45 connection, whereas phonological decisions modulated the BA44_BA45 connection. Bayesian model selection revealed a superiority of Model #1. In this model, the strength of the ITG_BA45 connection was enhanced during lexical decisions. This model is in line with the hypothesis that left BA 45 supports explicit lexical decisions during visual word recognition based on lexical access in the ITG.