Header

UZH-Logo

Maintenance Infos

Soil erosion along a transect in a forested catchment: Recent or ancient processes?


Calitri, Francesca; Sommer, Michael; van der Meij, Marijn W; Egli, Markus (2020). Soil erosion along a transect in a forested catchment: Recent or ancient processes? Catena, 194:104683.

Abstract

Forested areas are assumed not to be influenced by erosion processes. However, forest soils of Northern Germany in a hummocky ground moraine landscape can sometimes exhibit a very shallow thickness on crest positions and buried soils on slope positions. The question consequently is: Are these on-going or ancient erosional and depositional processes? Plutonium isotopes act as soil erosion/deposition tracers for recent (last few decades) processes. Here, we quantified the 239+240Pu inventories in a small, forested catchment (ancient forest “Melzower Forst”, deciduous trees), which is characterised by a hummocky terrain including a kettle hole. Soil development depths (depth to C horizon) and 239+240Pu inventories along a catena of sixteen different profiles were determined and correlated to relief parameters. Moreover, we compared different modelling approaches to derive erosion rates from Pu data.

We find a strong relationship between soil development depths, distance-to-sink and topography along the catena. Fully developed Retisols (thicknesses > 1 m) in the colluvium overlay old land surfaces as documented by fossil Ah horizons. However, we found no relationship of Pu-based erosion rates to any relief parameter. Instead, 239+240Pu inventories showed a very high local, spatial variability (36–70 Bq m−2). Low annual rainfall, spatially distributed interception and stem flow might explain the high variability of the 239+240Pu inventories, giving rise to a patchy input pattern. Different models resulted in quite similar erosion and deposition rates (max: −5 t ha−1 yr−1 to +7.3 t ha−1 yr−1). Although some rates are rather high, the magnitude of soil erosion and deposition - in terms of soil thickness change - is negligible during the last 55 years. The partially high values are an effect of the patchy Pu deposition on the forest floor. This forest has been protected for at least 240 years. Therefore rather natural events and anthropogenic activities during medieval times or even earlier must have caused the observed soil pattern, which documents strong erosion and deposition processes.

Abstract

Forested areas are assumed not to be influenced by erosion processes. However, forest soils of Northern Germany in a hummocky ground moraine landscape can sometimes exhibit a very shallow thickness on crest positions and buried soils on slope positions. The question consequently is: Are these on-going or ancient erosional and depositional processes? Plutonium isotopes act as soil erosion/deposition tracers for recent (last few decades) processes. Here, we quantified the 239+240Pu inventories in a small, forested catchment (ancient forest “Melzower Forst”, deciduous trees), which is characterised by a hummocky terrain including a kettle hole. Soil development depths (depth to C horizon) and 239+240Pu inventories along a catena of sixteen different profiles were determined and correlated to relief parameters. Moreover, we compared different modelling approaches to derive erosion rates from Pu data.

We find a strong relationship between soil development depths, distance-to-sink and topography along the catena. Fully developed Retisols (thicknesses > 1 m) in the colluvium overlay old land surfaces as documented by fossil Ah horizons. However, we found no relationship of Pu-based erosion rates to any relief parameter. Instead, 239+240Pu inventories showed a very high local, spatial variability (36–70 Bq m−2). Low annual rainfall, spatially distributed interception and stem flow might explain the high variability of the 239+240Pu inventories, giving rise to a patchy input pattern. Different models resulted in quite similar erosion and deposition rates (max: −5 t ha−1 yr−1 to +7.3 t ha−1 yr−1). Although some rates are rather high, the magnitude of soil erosion and deposition - in terms of soil thickness change - is negligible during the last 55 years. The partially high values are an effect of the patchy Pu deposition on the forest floor. This forest has been protected for at least 240 years. Therefore rather natural events and anthropogenic activities during medieval times or even earlier must have caused the observed soil pattern, which documents strong erosion and deposition processes.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

2 downloads since deposited on 07 Jan 2021
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Earth-Surface Processes
Uncontrolled Keywords:Earth-Surface Processes
Language:English
Date:1 November 2020
Deposited On:07 Jan 2021 10:46
Last Modified:08 Jan 2021 21:02
Publisher:Elsevier
ISSN:0341-8162
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.catena.2020.104683

Download

Closed Access: Download allowed only for UZH members

Content: Accepted Version
Language: English
Filetype: PDF - Registered users only until 1 December 2022
Size: 8MB
Embargo till: 2022-12-01