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Eric Gibson is to be congratulated for a thoughtful review of the role of p-values

in the assessment of the strength of evidence of research findings in pharmaceutical

drug development. This perspective highlights important issues in a highly regulated

environment, where study planning, protocol writing and pre-registration have been

the standard for many years. It gives important insights to other disciplines, where

similar standards are currently being implemented (Chambers, 2019a,b).
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Gibson (2020) mentions the “reproducibility probability” as a way to quantify the

strength of evidence measured by p-values, his results are reproduced in Table 1. What

is the probability that an identically designed second study (with the same sample

size) will be significant, given the result from the first study? This is perhaps better

referred to as the replication probability, following the distinction between reprodu-

cibility and replicability as suggested by National Academies of Sciences, Engineering,

and Medicine (2019), see also Goodman et al. (2016). We would like to comment on

how this quantity can be further adjusted to give a more realistic estimate of how

likely it is that a replication will again be significant.

p-value
Calibration method 0.10 0.05 0.01 0.001 0.0001 0.00001

BFB 1.6 2.5 8 53 399 3195
− log10(p-value) 1 1.3 2 3 4 5

R̂P unadjusted 0.38 0.50 0.73 0.91 0.97 0.99

R̂P adjusted for uncertainty 0.41 0.50 0.67 0.83 0.91 0.96
+ regression to the mean 0.23 0.35 0.57 0.77 0.89 0.94
+ heterogeneity 0.19 0.30 0.49 0.68 0.80 0.88

Table 1: Comparison of Bayes factor bound, − log10(p-value), and replication probab-
ility calibration of p-values. Replication probabilities are either unadjusted or
adjusted for uncertainty of original effect estimate, regression to the mean,
between-study heterogeneity of the effect.

In a seminal contribution, Goodman (1992) showed that the replication probability

solely depends on the original p-value and that it is only 50% for borderline significant

studies (p ≈ 0.05). In the best-case scenario the observed effect estimate is the true

effect, which is also assumed for the computation of the probabilities shown in Gibson

(2020). In practice, however, there is still uncertainty about the effect, and we may

want to adjust the replication probability by averaging it over the distribution of the

effect estimate, as also considered in Goodman (1992). Incorporation of the uncertainty
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about the effect leads also to larger uncertainty about whether the replication will be

significant. Specifically, the replication probability further decreases for significant

p-values, while it increases for non-significant ones, see Table 1.

Although taking into account the uncertainty of the estimate may improve the cal-

ibration of the replication probability, taking a study result at face value might still

not be good idea since effect estimates are often exaggerated due to publication bias

and regression to the mean (as Gibson also mentions in Section 2.4). This problem is

particularly severe for low powered studies, where significant findings are likely to

be false positive. Copas (1997) suggested a method to address this issue, shrinking

the effect estimate towards zero. In short, the amount of shrinkage is 1/z2 where z is

the standard z-statistic associated with p. The corresponding replication probabilities

then decrease further, as shown in Table 1. For example, for p = 0.05, the amount

of shrinkage is 1/1.962 = 0.26 and the replication probability decreases from 0.50

(without shrinkage) to 0.35, so only one in three borderline significant studies will

achieve significance in a replication study.

Finally, the assumption that the true effect is exactly the same in original and replica-

tion is often inappropriate. While in theory we can think about an identically designed

replication, in practice there will always be deviations from the original study, e. g. the

study population may differ in some characteristics. It is more reasonable to assume

between-study heterogeneity of effects, as is also often done in drug development (see

e.g. Neuenschwander et al., 2018). Table 1 also shows replication probabilities that

were adjusted for between-study heterogeneity on top of the other adjustments. The

heterogeneity parameter was chosen based on the upper limit of “negligible” hetero-

geneity (I2 = 40%) according to the Cochrane guidelines for systematic reviews (Deeks

et al., 2019). We can see that the replication probabilities decrease further. For example,
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for p = 0.0001 it decreases from unadjusted 0.97 to adjusted 0.80, the convention for a

reasonable power in many fields.

Gibson (2020) argues that for p-values below 0.001 replication probabilities do not

calibrate as well as − log10(p) or Bayes factor bounds. However, this is not the case

anymore after adjusting for uncertainty, regression to the mean, and heterogeneity. In

an empirical investigation we attempted to predict replication effect estimates using

data from four different replication projects (Pawel and Held, 2020). With the adjust-

ments mentioned above, we were able to substantially improve predictive performance

upon previous attempts. In fact, taking into account both regression to the mean and

heterogeneity led to well calibrated predictions in two of the four datasets.

Example
1 2 3

original p-value 0.049 0.051 0.049
replication p-value 0.049 0.001 0.001
relative sample size 1 1 8

harmonic mean p-value 0.003 0.0004 0.0004
BFB 6 129 133

relative effect size 1 1.69 0.59
one-sided sceptical p-value 0.082 0.047 0.10

Table 2: Three examples with different original and replication studies. Harmonic
mean p-value, Bayes factor bound, relative effect size, and one-sided sceptical
p-value are shown for each.

The case studies described in Gibson (2020, Section 3) are clear failures with rep-

lication effect estimates even in the wrong direction. However, quite often the effect

estimates go in the same direction, but it is not clear whether the observed result can

be regarded as replication success. The "two-trials rule" (Senn, 2007) requires both

studies to be significant, but can produce anomalies which do not reflect the available
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evidence. For example, two trials both with (two-sided) p = 0.049 (example 1 in Table

2) will then lead to drug approval but carry less evidence for a treatment effect than

one trial with p = 0.051, say, and the other one with p = 0.001. The latter, however,

would not pass the two-trials rule, although its Bayes factor bound is much larger than

for example 1.

An alternative to the two-trials rule with better properties, the harmonic mean χ2-

test, was recently proposed (Held, 2020b). This method produces a meta-analytic

p-value pH and can be extended to more than two studies, but differs substantially

from more standard meta-analytic approaches, as it requires all individual studies to

be convincing to a certain degree. Using the p-value threshold 2 × (1/40)× (1/40) =

0.00125 suggested by Gibson (2020, Section 2.5), the first example would not lead to

approval (pH = 0.003), whereas the second would (pH = 0.0004).

Low powered original studies (with small sample size no) are not the only problem.

Replication studies with relatively large sample sizes nr can also be misleading, as

they may lead to significance even if the replication effect estimate θ̂r is much smaller

than the original one θ̂o. Let c = nr/no and d = θ̂r/θ̂o denote the relative sample size

and the relative effect size of replication to original study, respectively. Assume the

two studies have the same primary endpoint. Under the usual normality assumption

for the effect estimate combined with the standard
√

n law for the standard error we

obtain the relative effect size

d = c−1/2 zo

zr
, (1)

here zo and zr are the z-statistics of the original and replication study, respectively.

Consider now the third example with po = 0.049 and pr = 0.001 and assume the

sample size of the replication study has been eight times as large compared to the

original study, so c = 8. This sounds exaggerated, but is roughly the sample size
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needed to achieve 80% power to detect the effect observed in the first study accounting

for the necessary shrinkage implied by regression to the mean (Pawel and Held, 2020,

Appendix S2). Then d = 0.59, so there is substantial shrinkage of the replication

effect estimate. Common sense suggests that this result should be treated with more

suspicion than example 2, say, where the effect estimate even increases (d = 1.69), but

the p-values are virtually the same. These considerations suggest that the two-trials

rule is a poor indicator of replication success (Simonsohn, 2015).

A reverse-Bayes approach for the assessment of replication success was proposed in

Held (2020a), which penalizes shrinkage of the replication estimate compared to the

original estimate, while ensuring that both effect estimates are statistically significant

to some extent. The method takes into account not only the p-values from the two

studies, but also the relative sample size c and therefore the relative effect size d via (1).

A quantitative measure of the degree of replication success is proposed, the sceptical

p-value pS. It quantifies the degree of conflict between the replication experiment and

a sceptical prior that would make the original experiment no longer significant. Table

2 gives the one-sided version of the sceptical p-value. While the interpretation of the

actual value of pS requires a recalibration (Held et al., 2020), it can be easily used

to compare the degree of replication success of different study pairs (the smaller, the

better). Interestingly, the first example with po = pr = 0.049 and c = 1 (and hence

d = 1) is then more trustworthy (with pS = 0.082) than the seemingly more convincing

third example with po = 0.049, pr = 0.001 and c = 8 (with pS = 0.10). This shows how

pS takes into account sample and effect sizes when assessing replication success.

We want to add a few final comments on the interpretation of the 5% level for stat-

istical significance. It is now well accepted that p < 0.05 is a too lax criterion for a

scientific discovery. Indeed, even in the absence of multiplicity issues, selective re-
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porting, etc, p ≈ 0.05 gives only weak evidence against the null as quantified by the

corresponding Bayes factor bound. This is why Benjamin et al. (2018) have suggested

the more stringent 0.005 significance threshold for claims of new discoveries. Stud-

ies with 0.005 < p < 0.05 are called “suggestive”, calling for confirmation through

replication. It is worth noting that it was Fisher who said that a significant observa-

tion (at the 0.05 threshold) indicates that it is merely worth to repeat the experiment

(Goodman, 2016). This view underlines the central role of replication and has to be

contrasted to the misleading, but still prevailing view that a single significant result

gives “statistical proof” of a scientific claim.

Acknowledgments Support by the Swiss National Science Foundation (Project #

189295) is gratefully acknowledged.
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