Header

UZH-Logo

Maintenance Infos

Histone H1 protects telomeric repeats from H3K27me3 invasion in Arabidopsis


Abstract

Linker histones play a pivotal role in shaping chromatin architecture, notably through their globular H1 (GH1) domain that contacts the nucleosome and linker DNA. Yet, the interplay of H1 with chromatin factors along the epigenome landscape is poorly understood. Here, we report that Arabidopsis H1 favors chromatin compaction and H3K27me3 marking on a majority of Polycomb-targeted protein-coding genes while preventing H3K27me3 accumulation on telomeres and pericentromeric interstitial telomeric repeats (ITRs). These contrasting effects of H1 on H3K27me3 enrichment are associated with long-distance effects on the 3D organization of telomeres and ITRs. Mechanistically, H1 prevents ITRs from being invaded by Telomere Repeat Binding 1 (TRB1), a GH1-containing telomere component with an extra-telomeric function in targeting Polycomb to genes bearing telomeric motifs. We propose that reciprocal DNA binding of H1 and TRB1 to clustered telobox motifs prevents H3K27me3 accumulation on large chromosomal blocks, conferring a sequence-specific role to H1 in epigenome homeostasis.

Abstract

Linker histones play a pivotal role in shaping chromatin architecture, notably through their globular H1 (GH1) domain that contacts the nucleosome and linker DNA. Yet, the interplay of H1 with chromatin factors along the epigenome landscape is poorly understood. Here, we report that Arabidopsis H1 favors chromatin compaction and H3K27me3 marking on a majority of Polycomb-targeted protein-coding genes while preventing H3K27me3 accumulation on telomeres and pericentromeric interstitial telomeric repeats (ITRs). These contrasting effects of H1 on H3K27me3 enrichment are associated with long-distance effects on the 3D organization of telomeres and ITRs. Mechanistically, H1 prevents ITRs from being invaded by Telomere Repeat Binding 1 (TRB1), a GH1-containing telomere component with an extra-telomeric function in targeting Polycomb to genes bearing telomeric motifs. We propose that reciprocal DNA binding of H1 and TRB1 to clustered telobox motifs prevents H3K27me3 accumulation on large chromosomal blocks, conferring a sequence-specific role to H1 in epigenome homeostasis.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

64 downloads since deposited on 14 Jan 2021
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Working Paper
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2020
Deposited On:14 Jan 2021 07:43
Last Modified:24 Jan 2024 15:38
Series Name:bioRxiv
Number of Pages:46
ISSN:2164-7844
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1101/2020.11.28.402172
Official URL:https://www.biorxiv.org/content/10.1101/2020.11.28.402172v1
  • Content: Published Version
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)