Header

UZH-Logo

Maintenance Infos

Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity


Thomas, Christopher W; Guillaumin, Mathilde C C; McKillop, Laura E; Achermann, Peter; Vyazovskiy, Vladyslav V (2020). Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. eLife, 9:e54148.

Abstract

Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define ‘Process S’, a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5–4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.

Abstract

Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define ‘Process S’, a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5–4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 15 Jan 2021
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology

04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
04 Faculty of Medicine > The KEY Institute for Brain-Mind Research
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > General Neuroscience
Life Sciences > General Immunology and Microbiology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Uncontrolled Keywords:General Biochemistry, Genetics and Molecular Biology, General Immunology and Microbiology, General Neuroscience, General Medicine
Language:English
Date:2 July 2020
Deposited On:15 Jan 2021 10:37
Last Modified:16 Feb 2021 21:05
Publisher:eLife Sciences Publications Ltd.
ISSN:2050-084X
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.7554/elife.54148
PubMed ID:32614324

Download

Gold Open Access

Download PDF  'Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity'.
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)