Header

UZH-Logo

Maintenance Infos

Initial Bacterial Adhesion and Biofilm Formation on Aligner Materials


Tektas, Sibel; Thurnheer, Thomas; Eliades, Theodore; Attin, Thomas; Karygianni, Lamprini (2020). Initial Bacterial Adhesion and Biofilm Formation on Aligner Materials. Antibiotics, 9(12):908.

Abstract

The present study aims to assess the initial bacterial adhesion and biofilm formation on different aligner materials. A total of four different aligner materials, CA-medium (CAM), copolyester (COP), Duran (DUR), Erkodur (ERK), were tested. Stimulated human saliva was obtained from six healthy volunteers. Salivary bacteria were harvested by centrifugation, and 1 mL of the salivary suspension was injected onto each sample surface for 2 h and 3 days, respectively. The samples were then washed twice with 5 mL 0.9% NaCl solution, and non-adherent bacteria were removed. The adherent microorganisms were dislodged from the sample surfaces after ultrasonication for 4 min in 1 mL 0.9% NaCl on ice. After the incubation of the adherent salivary bacteria under both aerobic and anaerobic conditions on Columbia blood agar plates at 37 °C and 5% CO2 and in anaerobic jars overnight, several dilutions thereof were used for the determination of CFUs. This protocol was applied three times, obtaining an average of nine independent measurements for each material group. Overall, the differences between the tested aligner materials as well as between the materials and controls were not of statistical significance (p > 0.05). Regarding initial bacterial attachment and biofilm formation, the tested aligner materials are comparable to enamel and metal orthodontic brackets and can be therefore considered for clinical use. The four tested aligner materials CAM, COP, DUR, ERK showed no significant differences in initial microbial attachment and biofilm formation of aerobic and anaerobic species compared to enamel and conventional brackets.

Abstract

The present study aims to assess the initial bacterial adhesion and biofilm formation on different aligner materials. A total of four different aligner materials, CA-medium (CAM), copolyester (COP), Duran (DUR), Erkodur (ERK), were tested. Stimulated human saliva was obtained from six healthy volunteers. Salivary bacteria were harvested by centrifugation, and 1 mL of the salivary suspension was injected onto each sample surface for 2 h and 3 days, respectively. The samples were then washed twice with 5 mL 0.9% NaCl solution, and non-adherent bacteria were removed. The adherent microorganisms were dislodged from the sample surfaces after ultrasonication for 4 min in 1 mL 0.9% NaCl on ice. After the incubation of the adherent salivary bacteria under both aerobic and anaerobic conditions on Columbia blood agar plates at 37 °C and 5% CO2 and in anaerobic jars overnight, several dilutions thereof were used for the determination of CFUs. This protocol was applied three times, obtaining an average of nine independent measurements for each material group. Overall, the differences between the tested aligner materials as well as between the materials and controls were not of statistical significance (p > 0.05). Regarding initial bacterial attachment and biofilm formation, the tested aligner materials are comparable to enamel and metal orthodontic brackets and can be therefore considered for clinical use. The four tested aligner materials CAM, COP, DUR, ERK showed no significant differences in initial microbial attachment and biofilm formation of aerobic and anaerobic species compared to enamel and conventional brackets.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

42 downloads since deposited on 15 Jan 2021
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Conservative and Preventive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Life Sciences > Biochemistry
Life Sciences > General Pharmacology, Toxicology and Pharmaceutics
Health Sciences > Microbiology (medical)
Health Sciences > Infectious Diseases
Health Sciences > Pharmacology (medical)
Uncontrolled Keywords:General Pharmacology, Toxicology and Pharmaceutics, Microbiology (medical), Biochemistry, Pharmacology (medical), Microbiology, Infectious Diseases
Language:English
Date:15 December 2020
Deposited On:15 Jan 2021 07:18
Last Modified:24 Apr 2024 01:50
Publisher:MDPI Publishing
ISSN:2079-6382
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/antibiotics9120908
PubMed ID:33333723
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)