Header

UZH-Logo

Maintenance Infos

Legionella quorum sensing meets cyclic-di-GMP signaling


Hochstrasser, Ramon; Hilbi, Hubert (2020). Legionella quorum sensing meets cyclic-di-GMP signaling. Current Opinion in Microbiology, 55(Juni):9-16.

Abstract

Bacterial gene regulation occurs through complex networks, wherein linear systems respond to intracellular or extracellular cues and engage on vivid crosstalk. The ubiquitous water-borne bacterium Legionella pneumophila colonizes various distinct environmental niches ranging from biofilms to protozoa, and - as an 'accidental' pathogen - the human lung. Consequently, L. pneumophila gene regulation evolved to integrate a broad spectrum of different endogenous and exogenous signals. Endogenous signals produced and detected by L. pneumophila comprise the quorum sensing autoinducer LAI-1 (3-hydroxypentadecane-4-one) and c-di-GMP. As an exogenous cue, nitric oxide controls the c-di-GMP regulatory network of L. pneumophila. The Legionella quorum sensing (Lqs) system regulates virulence, motility and natural competence of L. pneumophila. The Lqs system is linked to c-di-GMP signaling through the pleiotropic transcription factor LvbR, which also regulates the architecture of L. pneumophila biofilms. In this review, we highlight recent insights into the crosstalk of Legionella quorum sensing and c-di-GMP signaling.

Abstract

Bacterial gene regulation occurs through complex networks, wherein linear systems respond to intracellular or extracellular cues and engage on vivid crosstalk. The ubiquitous water-borne bacterium Legionella pneumophila colonizes various distinct environmental niches ranging from biofilms to protozoa, and - as an 'accidental' pathogen - the human lung. Consequently, L. pneumophila gene regulation evolved to integrate a broad spectrum of different endogenous and exogenous signals. Endogenous signals produced and detected by L. pneumophila comprise the quorum sensing autoinducer LAI-1 (3-hydroxypentadecane-4-one) and c-di-GMP. As an exogenous cue, nitric oxide controls the c-di-GMP regulatory network of L. pneumophila. The Legionella quorum sensing (Lqs) system regulates virulence, motility and natural competence of L. pneumophila. The Lqs system is linked to c-di-GMP signaling through the pleiotropic transcription factor LvbR, which also regulates the architecture of L. pneumophila biofilms. In this review, we highlight recent insights into the crosstalk of Legionella quorum sensing and c-di-GMP signaling.

Statistics

Citations

Dimensions.ai Metrics
6 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Health Sciences > Microbiology (medical)
Health Sciences > Infectious Diseases
Language:English
Date:June 2020
Deposited On:19 Jan 2021 14:19
Last Modified:27 Jan 2022 04:30
Publisher:Elsevier
ISSN:1369-5274
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.mib.2020.01.001
PubMed ID:32045871
Full text not available from this repository.