Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Evolution and function of bacterial RCC1 repeat effectors

Swart, Anna Leoni; Gomez-Valero, Laura; Buchrieser, Carmen; Hilbi, Hubert (2020). Evolution and function of bacterial RCC1 repeat effectors. Cellular Microbiology, 22(10):e13246.

Abstract

Intracellular bacterial pathogens harbour genes, the closest homologues of which are found in eukaryotes. Regulator of chromosome condensation 1 (RCC1) repeat proteins are phylogenetically widespread and implicated in protein-protein interactions, such as the activation of the small GTPase Ran by its cognate guanine nucleotide exchange factor, RCC1. Legionella pneumophila and Coxiella burnetii, the causative agents of Legionnaires' disease and Q fever, respectively, harbour RCC1 repeat coding genes. Legionella pneumophila secretes the RCC1 repeat 'effector' proteins LegG1, PpgA and PieG into eukaryotic host cells, where they promote the activation of the pleiotropic small GTPase Ran, microtubule stabilisation, pathogen vacuole motility and intracellular bacterial growth as well as host cell migration. The RCC1 repeat effectors localise to the pathogen vacuole or the host plasma membrane and target distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself. Coxiella burnetii translocates the RCC1 repeat effector NopA into host cells, where the protein localises to nucleoli. NopA binds to Ran GTPase and promotes the nuclear accumulation of Ran(GTP), thus pertubing the import of the transcription factor NF-κB and innate immune signalling. Hence, divergent evolution of bacterial RCC1 repeat effectors defines the range of Ran GTPase cycle targets and likely allows fine-tuning of Ran GTPase activation by the pathogens at different cellular sites.

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Life Sciences > Immunology
Life Sciences > Virology
Language:English
Date:October 2020
Deposited On:19 Jan 2021 13:44
Last Modified:24 Dec 2024 02:41
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1462-5814
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/cmi.13246
PubMed ID:32720355
Full text not available from this repository.

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
11 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Authors, Affiliations, Collaborations

Similar Publications