Header

UZH-Logo

Maintenance Infos

Impact of transposable elements on methylation and gene expression across natural accessions of Brachypodium distachyon


Wyler, Michele; Stritt, Christoph; Walser, Jean-Claude; Baroux, Célia; Roulin, Anne C (2020). Impact of transposable elements on methylation and gene expression across natural accessions of Brachypodium distachyon. Genome Biology and Evolution, 12(11):1994-2001.

Abstract

Transposable elements (TEs) constitute a large fraction of plant genomes and are mostly present in a transcriptionally silent state through repressive epigenetic modifications, such as DNA methylation. TE silencing is believed to influence the regulation of adjacent genes, possibly as DNA methylation spreads away from the TE. Whether this is a general principle or a context-dependent phenomenon is still under debate, pressing for studying the relationship between TEs, DNA methylation, and nearby gene expression in additional plant species. Here, we used the grass Brachypodium distachyon as a model and produced DNA methylation and transcriptome profiles for 11 natural accessions. In contrast to what is observed in Arabidopsis thaliana, we found that TEs have a limited impact on methylation spreading and that only few TE families are associated with a low expression of their adjacent genes. Interestingly, we found that a subset of TE insertion polymorphisms is associated with differential gene expression across accessions. Thus, although not having a global impact on gene expression, distinct TE insertions may contribute to specific gene expression patterns in B. distachyon.

Abstract

Transposable elements (TEs) constitute a large fraction of plant genomes and are mostly present in a transcriptionally silent state through repressive epigenetic modifications, such as DNA methylation. TE silencing is believed to influence the regulation of adjacent genes, possibly as DNA methylation spreads away from the TE. Whether this is a general principle or a context-dependent phenomenon is still under debate, pressing for studying the relationship between TEs, DNA methylation, and nearby gene expression in additional plant species. Here, we used the grass Brachypodium distachyon as a model and produced DNA methylation and transcriptome profiles for 11 natural accessions. In contrast to what is observed in Arabidopsis thaliana, we found that TEs have a limited impact on methylation spreading and that only few TE families are associated with a low expression of their adjacent genes. Interestingly, we found that a subset of TE insertion polymorphisms is associated with differential gene expression across accessions. Thus, although not having a global impact on gene expression, distinct TE insertions may contribute to specific gene expression patterns in B. distachyon.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 19 Jan 2021
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Life Sciences > Genetics
Uncontrolled Keywords:Genetics, Ecology, Evolution, Behavior and Systematics
Language:English
Date:3 November 2020
Deposited On:19 Jan 2021 16:26
Last Modified:20 Jan 2021 21:02
Publisher:Oxford University Press
ISSN:1759-6653
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/gbe/evaa180
Project Information:
  • : FunderSNSF
  • : Grant IDPZ00P3_154724
  • : Project TitlePopulation genomics and local adaptation: genome wide analysis of transposable elements and natural population evolutionary trajectories.

Download

Gold Open Access

Download PDF  'Impact of transposable elements on methylation and gene expression across natural accessions of Brachypodium distachyon'.
Preview
Content: Published Version
Filetype: PDF
Size: 919kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)