The huge power for social influence of digital media may come with the risk of intensifying common societal biases, such as gender and age stereotypes. Speaker's gender and age also behaviorally manifest in language use, and language may be a powerful tool to shape impact. The present study took the example of TED, a highly successful knowledge dissemination platform, to study online influence. Our goal was to investigate how gender- and age-linked language styles-beyond chronological age and identified gender-link to talk impact and whether this reflects gender and age stereotypes. In a pre-registered study, we collected transcripts of TED Talks along with their impact measures, i.e., views and ratios of positive and negative talk ratings, from the TED website. We scored TED Speakers' (N = 1,095) language with gender- and age-morphed language metrics to obtain measures of female versus male, and younger versus more senior language styles. Contrary to our expectations and to the literature on gender stereotypes, more female language was linked to higher impact in terms of quantity, i.e., more talk views, and this was particularly the case among talks with a lot of views. Regarding quality of impact, language signatures of gender and age predicted different types of positive and negative ratings above and beyond main effects of speaker's gender and age. The differences in ratings seem to reflect common stereotype contents of warmth (e.g., "beautiful" for female, "courageous" for female and senior language) versus competence (e.g., "ingenious", "informative" for male language). The results shed light on how verbal behavior may contribute to stereotypical evaluations. They also illuminate how, within new digital social contexts, female language might be uniquely rewarded and, thereby, an underappreciated but highly effective tool for social influence. WC = 286 (max. 300 words).
Abstract
The huge power for social influence of digital media may come with the risk of intensifying common societal biases, such as gender and age stereotypes. Speaker's gender and age also behaviorally manifest in language use, and language may be a powerful tool to shape impact. The present study took the example of TED, a highly successful knowledge dissemination platform, to study online influence. Our goal was to investigate how gender- and age-linked language styles-beyond chronological age and identified gender-link to talk impact and whether this reflects gender and age stereotypes. In a pre-registered study, we collected transcripts of TED Talks along with their impact measures, i.e., views and ratios of positive and negative talk ratings, from the TED website. We scored TED Speakers' (N = 1,095) language with gender- and age-morphed language metrics to obtain measures of female versus male, and younger versus more senior language styles. Contrary to our expectations and to the literature on gender stereotypes, more female language was linked to higher impact in terms of quantity, i.e., more talk views, and this was particularly the case among talks with a lot of views. Regarding quality of impact, language signatures of gender and age predicted different types of positive and negative ratings above and beyond main effects of speaker's gender and age. The differences in ratings seem to reflect common stereotype contents of warmth (e.g., "beautiful" for female, "courageous" for female and senior language) versus competence (e.g., "ingenious", "informative" for male language). The results shed light on how verbal behavior may contribute to stereotypical evaluations. They also illuminate how, within new digital social contexts, female language might be uniquely rewarded and, thereby, an underappreciated but highly effective tool for social influence. WC = 286 (max. 300 words).
: Project TitleCo-sensing of couples’ adjustment to a life transition in daily life: A comparison of interpersonal emotion regulation in couples with and without depression risk
TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.