Header

UZH-Logo

Maintenance Infos

Intestinal inflammation alters mucosal carbohydrate foraging and monosaccharide incorporation into microbial glycans


Weiss, Gisela Adrienne; Grabinger, Thomas; Glaus Garzon, Jesus; Hasler, Tobias; Greppi, Anna; Lacroix, Christophe; Khanzhin, Nikolay; Hennet, Thierry (2021). Intestinal inflammation alters mucosal carbohydrate foraging and monosaccharide incorporation into microbial glycans. Cellular Microbiology, 23(1):e13269.

Abstract

Endogenous carbohydrates released from the intestinal mucus represent a constant source of nutrients to the intestinal microbiota. Mucus-derived carbohydrates can also be used as building blocks in the biosynthesis of bacterial cell wall components, thereby influencing host mucosal immunity. To assess the uptake of endogenous carbohydrates by gut microbes in healthy mice and during intestinal inflammation, we applied azido-monosaccharides that can be tracked on bacterial cell walls after conjugation with fluorophores. In interleukin-10 deficient mice, changes in the gut microbiota were accompanied by decreased carbohydrate hydrolase activities and increased lumenal concentrations of host glycan-derived monosaccharides. Tracking of the monosaccharide N-azidoacetylglucosamine (GlcNAz) in caecum bacteria revealed a preferential incorporation of this carbohydrate by Xanthomonadaceae in healthy mice and by Bacteroidaceae in interleukin-10 deficient mice. These GlcNAz-positive Bacteroidaceae fractions mainly belonged to the species B. acidifaciens and B. vulgatus. Growth of Bacteroides species in the presence of specific monosaccharides changed their stimulatory activity toward CD11c+ dendritic cells. Expression of activation markers and cytokine production was highest after stimulation of dendritic cells with B. vulgatus. The variable incorporation of monosaccharides by related Bacteroides species underline the necessity to investigate intestinal bacteria down to the species level when addressing microbiota-host interactions.

Abstract

Endogenous carbohydrates released from the intestinal mucus represent a constant source of nutrients to the intestinal microbiota. Mucus-derived carbohydrates can also be used as building blocks in the biosynthesis of bacterial cell wall components, thereby influencing host mucosal immunity. To assess the uptake of endogenous carbohydrates by gut microbes in healthy mice and during intestinal inflammation, we applied azido-monosaccharides that can be tracked on bacterial cell walls after conjugation with fluorophores. In interleukin-10 deficient mice, changes in the gut microbiota were accompanied by decreased carbohydrate hydrolase activities and increased lumenal concentrations of host glycan-derived monosaccharides. Tracking of the monosaccharide N-azidoacetylglucosamine (GlcNAz) in caecum bacteria revealed a preferential incorporation of this carbohydrate by Xanthomonadaceae in healthy mice and by Bacteroidaceae in interleukin-10 deficient mice. These GlcNAz-positive Bacteroidaceae fractions mainly belonged to the species B. acidifaciens and B. vulgatus. Growth of Bacteroides species in the presence of specific monosaccharides changed their stimulatory activity toward CD11c+ dendritic cells. Expression of activation markers and cytokine production was highest after stimulation of dendritic cells with B. vulgatus. The variable incorporation of monosaccharides by related Bacteroides species underline the necessity to investigate intestinal bacteria down to the species level when addressing microbiota-host interactions.

Statistics

Citations

Altmetrics

Downloads

6 downloads since deposited on 20 Jan 2021
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Life Sciences > Immunology
Life Sciences > Virology
Language:English
Date:January 2021
Deposited On:20 Jan 2021 15:18
Last Modified:01 Feb 2021 16:26
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1462-5814
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/cmi.13269
PubMed ID:32975882

Download

Hybrid Open Access

Download PDF  'Intestinal inflammation alters mucosal carbohydrate foraging and monosaccharide incorporation into microbial glycans'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)