Header

UZH-Logo

Maintenance Infos

Miswired Enhancer Logic Drives a Cancer of the Muscle Lineage


Abstract

Core regulatory transcription factors (CR TFs) establish enhancers with logical ordering during embryogenesis and development. Here we report that in fusion-positive rhabdomyosarcoma, a cancer of the muscle lineage, the chief oncogene PAX3-FOXO1 is driven by a translocated FOXO1 super enhancer (SE) restricted to a late stage of myogenesis. Using chromatin conformation capture techniques, we demonstrate that the extensive FOXO1 cis-regulatory domain interacts with PAX3. Furthermore, RNA sequencing and chromatin immunoprecipitation sequencing data in tumors bearing rare PAX translocations implicate enhancer miswiring across all fusion-positive tumors. HiChIP of H3K27ac showed connectivity between the FOXO1 SE, additional intra-domain enhancers, and the PAX3 promoter. We show that PAX3-FOXO1 transcription is diminished when this network of enhancers is ablated by CRISPR. Our data reveal a hijacked enhancer network that disrupts the stepwise CR TF logic of normal skeletal muscle development (PAX3 to MYOD to MYOG), replacing it with an "infinite loop" enhancer logic that locks rhabdomyosarcoma in an undifferentiated stage.

Abstract

Core regulatory transcription factors (CR TFs) establish enhancers with logical ordering during embryogenesis and development. Here we report that in fusion-positive rhabdomyosarcoma, a cancer of the muscle lineage, the chief oncogene PAX3-FOXO1 is driven by a translocated FOXO1 super enhancer (SE) restricted to a late stage of myogenesis. Using chromatin conformation capture techniques, we demonstrate that the extensive FOXO1 cis-regulatory domain interacts with PAX3. Furthermore, RNA sequencing and chromatin immunoprecipitation sequencing data in tumors bearing rare PAX translocations implicate enhancer miswiring across all fusion-positive tumors. HiChIP of H3K27ac showed connectivity between the FOXO1 SE, additional intra-domain enhancers, and the PAX3 promoter. We show that PAX3-FOXO1 transcription is diminished when this network of enhancers is ablated by CRISPR. Our data reveal a hijacked enhancer network that disrupts the stepwise CR TF logic of normal skeletal muscle development (PAX3 to MYOD to MYOG), replacing it with an "infinite loop" enhancer logic that locks rhabdomyosarcoma in an undifferentiated stage.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 25 Jan 2021
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:22 May 2020
Deposited On:25 Jan 2021 07:03
Last Modified:01 Feb 2021 16:28
Publisher:Cell Press (Elsevier)
ISSN:2589-0042
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.isci.2020.101103
PubMed ID:32416589

Download

Gold Open Access

Download PDF  'Miswired Enhancer Logic Drives a Cancer of the Muscle Lineage'.
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)