Header

UZH-Logo

Maintenance Infos

Cytoplasmic accumulation of FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and defects in inhibitory synapses


Abstract

Gene mutations causing cytoplasmic mislocalization of the RNA-binding protein FUS, lead to severe forms of amyotrophic lateral sclerosis (ALS). Cytoplasmic accumulation of FUS is also observed in other diseases, with unknown consequences. Here, we show that cytoplasmic mislocalization of FUS drives behavioral abnormalities in knock-in mice, including locomotor hyperactivity and alterations in social interactions, in the absence of widespread neuronal loss. Mechanistically, we identified a profound increase in neuronal activity in the frontal cortex of Fus knock-in mice in vivo. Importantly, RNAseq analysis suggested involvement of defects in inhibitory neurons, that was confirmed by ultrastructural and morphological defects of inhibitory synapses and increased synaptosomal levels of mRNAs involved in inhibitory neurotransmission. Thus, cytoplasmic FUS triggers inhibitory synaptic deficits, leading to increased neuronal activity and behavioral phenotypes. FUS mislocalization may trigger deleterious phenotypes beyond motor neuron impairment in ALS, but also in other neurodegenerative diseases with FUS mislocalization.

Abstract

Gene mutations causing cytoplasmic mislocalization of the RNA-binding protein FUS, lead to severe forms of amyotrophic lateral sclerosis (ALS). Cytoplasmic accumulation of FUS is also observed in other diseases, with unknown consequences. Here, we show that cytoplasmic mislocalization of FUS drives behavioral abnormalities in knock-in mice, including locomotor hyperactivity and alterations in social interactions, in the absence of widespread neuronal loss. Mechanistically, we identified a profound increase in neuronal activity in the frontal cortex of Fus knock-in mice in vivo. Importantly, RNAseq analysis suggested involvement of defects in inhibitory neurons, that was confirmed by ultrastructural and morphological defects of inhibitory synapses and increased synaptosomal levels of mRNAs involved in inhibitory neurotransmission. Thus, cytoplasmic FUS triggers inhibitory synaptic deficits, leading to increased neuronal activity and behavioral phenotypes. FUS mislocalization may trigger deleterious phenotypes beyond motor neuron impairment in ALS, but also in other neurodegenerative diseases with FUS mislocalization.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

16 downloads since deposited on 25 Jan 2021
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Working Paper
Communities & Collections:07 Faculty of Science > Department of Quantitative Biomedicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:11 June 2020
Deposited On:25 Jan 2021 15:57
Last Modified:25 Jan 2021 15:57
Series Name:arXiv.org
ISSN:2331-8422
OA Status:Green
Publisher DOI:https://doi.org/10.1101/2020.06.09.141556

Download

Green Open Access

Download PDF  'Cytoplasmic accumulation of FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and defects in inhibitory synapses'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)