Header

UZH-Logo

Maintenance Infos

fine-GRAPE: fine-grained APi usage extractor – an approach and dataset to investigate API usage


Sawant, Anand Ashok; Bacchelli, Alberto (2017). fine-GRAPE: fine-grained APi usage extractor – an approach and dataset to investigate API usage. Empirical Software Engineering, 22(3):1348-1371.

Abstract

An Application Programming Interface (API) provides a set of functionalities to a developer with the aim of enabling reuse. APIs have been investigated from different angles such as popularity usage and evolution to get a better understanding of their various characteristics. For such studies, software repositories are mined for API usage examples. However, many of the mining algorithms used for such purposes do not take type information into account. Thus making the results unreliable. In this paper, we aim to rectify this by introducing fine-GRAPE, an approach that produces fine-grained API usage information by taking advantage of type information while mining API method invocations and annotation. By means of fine-GRAPE, we investigate API usages from Java projects hosted on GitHub. We select five of the most popular APIs across GitHub Java projects and collect historical API usage information by mining both the release history of these APIs and the code history of every project that uses them. We perform two case studies on the resulting dataset. The first measures the lag time of each client. The second investigates the percentage of used API features. In the first case we find that for APIs that release more frequently clients are far less likely to upgrade to a more recent version of the API as opposed to clients of APIs that release infrequently. The second case study shows us that for most APIs there is a small number of features that is actually used and most of these features relate to those that have been introduced early in the APIs lifecycle.

Abstract

An Application Programming Interface (API) provides a set of functionalities to a developer with the aim of enabling reuse. APIs have been investigated from different angles such as popularity usage and evolution to get a better understanding of their various characteristics. For such studies, software repositories are mined for API usage examples. However, many of the mining algorithms used for such purposes do not take type information into account. Thus making the results unreliable. In this paper, we aim to rectify this by introducing fine-GRAPE, an approach that produces fine-grained API usage information by taking advantage of type information while mining API method invocations and annotation. By means of fine-GRAPE, we investigate API usages from Java projects hosted on GitHub. We select five of the most popular APIs across GitHub Java projects and collect historical API usage information by mining both the release history of these APIs and the code history of every project that uses them. We perform two case studies on the resulting dataset. The first measures the lag time of each client. The second investigates the percentage of used API features. In the first case we find that for APIs that release more frequently clients are far less likely to upgrade to a more recent version of the API as opposed to clients of APIs that release infrequently. The second case study shows us that for most APIs there is a small number of features that is actually used and most of these features relate to those that have been introduced early in the APIs lifecycle.

Statistics

Citations

Dimensions.ai Metrics
12 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 27 Jan 2021
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Scopus Subject Areas:Physical Sciences > Software
Language:English
Date:2017
Deposited On:27 Jan 2021 17:28
Last Modified:28 Jan 2021 21:00
Publisher:Springer
ISSN:1382-3256
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1007/s10664-016-9444-6
Other Identification Number:merlin-id:20270

Download

Hybrid Open Access

Download PDF  'fine-GRAPE: fine-grained APi usage extractor – an approach and dataset to investigate API usage'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)