Header

UZH-Logo

Maintenance Infos

ΔNp73/ETS2 complex drives glioblastoma pathogenesis- targeting downstream mediators by rebastinib prolongs survival in preclinical models of glioblastoma


Cam, Maren; Charan, Manish; Welker, Alessandra M; Dravid, Piyush; Studebaker, Adam W; Leonard, Jeffrey R; Pierson, Christopher R; Nakano, Ichiro; Beattie, Christine E; Hwang, Eugene I; Kambhampati, Madhuri; Nazarian, Javad; Finlay, Jonathan L; Cam, Hakan (2020). ΔNp73/ETS2 complex drives glioblastoma pathogenesis- targeting downstream mediators by rebastinib prolongs survival in preclinical models of glioblastoma. Neuro-Oncology, 22(3):345-356.

Abstract

BACKGROUND

Glioblastoma (GBM) remains one of the least successfully treated cancers. It is essential to understand the basic biology of this lethal disease and investigate novel pharmacological targets to treat GBM. The aims of this study were to determine the biological consequences of elevated expression of ΔNp73, an N-terminal truncated isoform of TP73, and to evaluate targeting of its downstream mediators, the angiopoietin 1 (ANGPT1)/tunica interna endothelial cell kinase 2 (Tie2) axis, by using a highly potent, orally available small-molecule inhibitor (rebastinib) in GBM.

METHODS

ΔNp73 expression was assessed in glioma sphere cultures, xenograft glioblastoma tumors, and glioblastoma patients by western blot, quantitative reverse transcription PCR, and immunohistochemistry. Immunoprecipitation, chromatin immunoprecipitation (ChiP) and sequential ChIP were performed to determine the interaction between ΔNp73 and E26 transformation-specific (ETS) proto-oncogene 2 (ETS2) proteins. The oncogenic consequences of ΔNp73 expression in glioblastomas were examined by in vitro and in vivo experiments, including orthotopic zebrafish and mouse intracranial-injection models. Effects of rebastinib on growth of established tumors and survival were examined in an intracranial-injection mouse model.

RESULTS

ΔNp73 upregulates both ANGPT1 and Tie2 transcriptionally through ETS conserved binding sites on the promoters by interacting with ETS2. Elevated expression of ΔNp73 promotes tumor progression by mediating angiogenesis and survival. Therapeutic targeting of downstream ΔNp73 signaling pathways by rebastinib inhibits growth of established tumors and extends survival in preclinical models of glioblastoma.

CONCLUSION

Aberrant expression of ΔNp73 in GBM promotes tumor progression through autocrine and paracrine signaling dependent on Tie2 activation by ANGPT1. Disruption of this signaling by rebastinib improves tumor response to treatment in glioblastoma.

Abstract

BACKGROUND

Glioblastoma (GBM) remains one of the least successfully treated cancers. It is essential to understand the basic biology of this lethal disease and investigate novel pharmacological targets to treat GBM. The aims of this study were to determine the biological consequences of elevated expression of ΔNp73, an N-terminal truncated isoform of TP73, and to evaluate targeting of its downstream mediators, the angiopoietin 1 (ANGPT1)/tunica interna endothelial cell kinase 2 (Tie2) axis, by using a highly potent, orally available small-molecule inhibitor (rebastinib) in GBM.

METHODS

ΔNp73 expression was assessed in glioma sphere cultures, xenograft glioblastoma tumors, and glioblastoma patients by western blot, quantitative reverse transcription PCR, and immunohistochemistry. Immunoprecipitation, chromatin immunoprecipitation (ChiP) and sequential ChIP were performed to determine the interaction between ΔNp73 and E26 transformation-specific (ETS) proto-oncogene 2 (ETS2) proteins. The oncogenic consequences of ΔNp73 expression in glioblastomas were examined by in vitro and in vivo experiments, including orthotopic zebrafish and mouse intracranial-injection models. Effects of rebastinib on growth of established tumors and survival were examined in an intracranial-injection mouse model.

RESULTS

ΔNp73 upregulates both ANGPT1 and Tie2 transcriptionally through ETS conserved binding sites on the promoters by interacting with ETS2. Elevated expression of ΔNp73 promotes tumor progression by mediating angiogenesis and survival. Therapeutic targeting of downstream ΔNp73 signaling pathways by rebastinib inhibits growth of established tumors and extends survival in preclinical models of glioblastoma.

CONCLUSION

Aberrant expression of ΔNp73 in GBM promotes tumor progression through autocrine and paracrine signaling dependent on Tie2 activation by ANGPT1. Disruption of this signaling by rebastinib improves tumor response to treatment in glioblastoma.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Oncology
Health Sciences > Neurology (clinical)
Life Sciences > Cancer Research
Language:English
Date:5 March 2020
Deposited On:27 Jan 2021 07:11
Last Modified:28 Jan 2021 21:01
Publisher:Oxford University Press
ISSN:1522-8517
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/neuonc/noz190
PubMed ID:31763674

Download

Full text not available from this repository.
View at publisher

Get full-text in a library