Abstract
PURPOSE: The present study evaluated the displacement and strain generated in an implant- supported fixed prosthesis under axial and non-axial loads using two methods.
MATERIALS AND METHODS: Three implants were inserted in a resin block. The Digital Image Correlation (DIC) was used to measure displacement and strain generated on the surface of the resin blocks for the different load applications (500N, 1 image/second). A 3-dimensional model was constructed and a load of 500 N was applied at an axial point and a non-axial point through finite element analysis (FEA).
RESULTS: Both methods gave similar trends for the strains, and both gave slightly higher strains with non-axial loading. FEA predicted higher strain magnitude (±11%) in comparison with DIC, but with the same mechanical behavior. According to ANOVA, the loading influenced the strain concentration. Higher strain was generated for non-axial loading around the implant nearest to the loading.
CONCLUSIONS: For implant-retained cantilever fixed prosthesis, the same load applied in the lever arm induces higher strain in the cervical area of the last implant, which suggests more damaging potential than a load applied at the center of the prosthesis.