Header

UZH-Logo

Maintenance Infos

Molecular Dynamics Reveals a DNA-Induced Dynamic Switch Triggering Activation of CRISPR-Cas12a


Saha, Aakash; Arantes, Pablo R; Hsu, Rohaine V; Narkhede, Yogesh B; Jinek, Martin; Palermo, Giulia (2020). Molecular Dynamics Reveals a DNA-Induced Dynamic Switch Triggering Activation of CRISPR-Cas12a. Journal of Chemical Information and Modeling, 60(12):6427-6437.

Abstract

CRISPR-Cas12a is a genome-editing system, recently also harnessed for nucleic acid detection, which is promising for the diagnosis of the SARS-CoV-2 coronavirus through the DETECTR technology. Here, a collective ensemble of multimicrosecond molecular dynamics characterizes the key dynamic determinants allowing nucleic acid processing in CRISPR-Cas12a. We show that DNA binding induces a switch in the conformational dynamics of Cas12a, which results in the activation of the peripheral REC2 and Nuc domains to enable cleavage of nucleic acids. The simulations reveal that large-amplitude motions of the Nuc domain could favor the conformational activation of the system toward DNA cleavages. In this process, the REC lobe plays a critical role. Accordingly, the joint dynamics of REC and Nuc shows the tendency to prime the conformational transition of the DNA target strand toward the catalytic site. Most notably, the highly coupled dynamics of the REC2 region and Nuc domain suggests that REC2 could act as a regulator of the Nuc function, similar to what was observed previously for the HNH domain in the CRISPR-associated nuclease Cas9. These mutual domain dynamics could be critical for the nonspecific binding of DNA and thereby for the underlying mechanistic functioning of the DETECTR technology. Considering that REC is a key determinant in the system's specificity, our findings provide a rational basis for future biophysical studies aimed at characterizing its function in CRISPR-Cas12a. Overall, our outcomes advance our mechanistic understanding of CRISPR-Cas12a and provide grounds for novel engineering efforts to improve genome editing and viral detection.

Abstract

CRISPR-Cas12a is a genome-editing system, recently also harnessed for nucleic acid detection, which is promising for the diagnosis of the SARS-CoV-2 coronavirus through the DETECTR technology. Here, a collective ensemble of multimicrosecond molecular dynamics characterizes the key dynamic determinants allowing nucleic acid processing in CRISPR-Cas12a. We show that DNA binding induces a switch in the conformational dynamics of Cas12a, which results in the activation of the peripheral REC2 and Nuc domains to enable cleavage of nucleic acids. The simulations reveal that large-amplitude motions of the Nuc domain could favor the conformational activation of the system toward DNA cleavages. In this process, the REC lobe plays a critical role. Accordingly, the joint dynamics of REC and Nuc shows the tendency to prime the conformational transition of the DNA target strand toward the catalytic site. Most notably, the highly coupled dynamics of the REC2 region and Nuc domain suggests that REC2 could act as a regulator of the Nuc function, similar to what was observed previously for the HNH domain in the CRISPR-associated nuclease Cas9. These mutual domain dynamics could be critical for the nonspecific binding of DNA and thereby for the underlying mechanistic functioning of the DETECTR technology. Considering that REC is a key determinant in the system's specificity, our findings provide a rational basis for future biophysical studies aimed at characterizing its function in CRISPR-Cas12a. Overall, our outcomes advance our mechanistic understanding of CRISPR-Cas12a and provide grounds for novel engineering efforts to improve genome editing and viral detection.

Statistics

Citations

Dimensions.ai Metrics
21 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

25 downloads since deposited on 27 Jan 2021
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Physical Sciences > General Chemistry
Physical Sciences > General Chemical Engineering
Physical Sciences > Computer Science Applications
Social Sciences & Humanities > Library and Information Sciences
Language:English
Date:28 December 2020
Deposited On:27 Jan 2021 16:40
Last Modified:27 Jan 2022 05:11
Publisher:American Chemical Society (ACS)
ISSN:1549-9596
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1021/acs.jcim.0c00929
PubMed ID:33107304
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)