Header

UZH-Logo

Maintenance Infos

Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissues


Jullien, Pauline E; Grob, Stefan; Marchais, Antonin; Pumplin, Nathan; Chevalier, Clement; Bonnet, Diane M V; Otto, Caroline; Schott, Gregory; Voinnet, Olivier (2020). Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissues. The Plant Journal, 103(5):1796-1809.

Abstract

Arabidopsis encodes 10 ARGONAUTE (AGO) effectors of RNA silencing, canonically loaded with either 21-22 nucleotide (nt) long small RNAs (sRNAs) to mediate post-transcriptional gene silencing (PTGS) or 24 nt sRNAs to promote RNA-directed DNA methylation. Using full-locus constructs, we characterized the expression, biochemical properties and possible modes of action of AGO3. Although AGO3 arose from a recent duplication at the AGO2 locus, their expression patterns differ drastically, with AGO2 being expressed in both male and female gametes whereas AGO3 accumulates in aerial vascular terminations and specifically in chalazal seed integuments. Accordingly, AGO3 downregulation alters gene expression in siliques. Similar to AGO2, AGO3 binds sRNAs with a strong 5' adenosine bias, but unlike Arabidopsis AGO2, it binds 24 nt sRNAs most efficiently. AGO3 immunoprecipitation experiments in siliques revealed that these sRNAs mostly correspond to genes and intergenic regions in a manner reflecting their respective accumulation from their loci of origin. AGO3 localizes to the cytoplasm and co-fractionates with polysomes to possibly mediate PTGS via translation inhibition.

Abstract

Arabidopsis encodes 10 ARGONAUTE (AGO) effectors of RNA silencing, canonically loaded with either 21-22 nucleotide (nt) long small RNAs (sRNAs) to mediate post-transcriptional gene silencing (PTGS) or 24 nt sRNAs to promote RNA-directed DNA methylation. Using full-locus constructs, we characterized the expression, biochemical properties and possible modes of action of AGO3. Although AGO3 arose from a recent duplication at the AGO2 locus, their expression patterns differ drastically, with AGO2 being expressed in both male and female gametes whereas AGO3 accumulates in aerial vascular terminations and specifically in chalazal seed integuments. Accordingly, AGO3 downregulation alters gene expression in siliques. Similar to AGO2, AGO3 binds sRNAs with a strong 5' adenosine bias, but unlike Arabidopsis AGO2, it binds 24 nt sRNAs most efficiently. AGO3 immunoprecipitation experiments in siliques revealed that these sRNAs mostly correspond to genes and intergenic regions in a manner reflecting their respective accumulation from their loci of origin. AGO3 localizes to the cytoplasm and co-fractionates with polysomes to possibly mediate PTGS via translation inhibition.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 27 Jan 2021
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Life Sciences > Genetics
Life Sciences > Plant Science
Life Sciences > Cell Biology
Uncontrolled Keywords:Plant Science, Genetics, Cell Biology
Language:English
Date:1 August 2020
Deposited On:27 Jan 2021 15:27
Last Modified:28 Jan 2021 21:02
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0960-7412
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/tpj.14868
PubMed ID:32506562
Project Information:
  • : FunderSNSF
  • : Grant IDPP00P3_163946
  • : Project TitleMethylome dynamics during Arabidopsis reproduction

Download

Closed Access: Download allowed only for UZH members