Header

UZH-Logo

Maintenance Infos

The clock gene TOC1 in shoots, not roots, determines fitness of Nicotiana attenuata under drought


Valim, Henrique F; McGale, Erica; Yon, Felipe; Halitschke, Rayko; Fragoso, Variluska; Schuman, Meredith Christine; Baldwin, Ian T (2019). The clock gene TOC1 in shoots, not roots, determines fitness of Nicotiana attenuata under drought. Plant Physiology, 181(1):305-318.

Abstract

The highly conserved core circadian clock component TIMING OF CAB EXPRESSION1 (TOC1) contextualizes environmental stress responses in plants, for example by gating abscisic acid signaling and suppressing thermoresponsive growth. Selective interaction of TOC1 with PHYTOCHROME B under far-red–enriched light suggests a connection between circadian gating of light responses and sensitivity to ABA, an important regulator of growth and stress responses, including under drought. However, the fitness consequences of TOC1 function, particularly in the root, are poorly understood. Here, we used the desert annual, Nicotiana attenuata, to investigate the function of TOC1 in shoots and roots for maintaining fitness under drought, in both field and glasshouse experiments. Despite marked decreases in leaf water loss, TOC1-deficient lines failed to maintain fitness in response to drought stress as measured by total seed capsule production. Restoring TOC1 transcript levels in shoots via micrografting was sufficient to restore wild-type drought responses under field conditions. Microarrays identified a coexpression module in leaves strongly linking red and far-red light signaling to drought responses in a TOC1-dependent manner, but experiments with phytochrome-deficient lines revealed that the effects of TOC1 deficiency under drought cannot be attributed to changes in red/far-red light perception alone. Taken together, these results elucidate the sophisticated, tissue-dependent role of the circadian clock in maintaining fitness in the face of long-term abiotic stresses such as drought.

Abstract

The highly conserved core circadian clock component TIMING OF CAB EXPRESSION1 (TOC1) contextualizes environmental stress responses in plants, for example by gating abscisic acid signaling and suppressing thermoresponsive growth. Selective interaction of TOC1 with PHYTOCHROME B under far-red–enriched light suggests a connection between circadian gating of light responses and sensitivity to ABA, an important regulator of growth and stress responses, including under drought. However, the fitness consequences of TOC1 function, particularly in the root, are poorly understood. Here, we used the desert annual, Nicotiana attenuata, to investigate the function of TOC1 in shoots and roots for maintaining fitness under drought, in both field and glasshouse experiments. Despite marked decreases in leaf water loss, TOC1-deficient lines failed to maintain fitness in response to drought stress as measured by total seed capsule production. Restoring TOC1 transcript levels in shoots via micrografting was sufficient to restore wild-type drought responses under field conditions. Microarrays identified a coexpression module in leaves strongly linking red and far-red light signaling to drought responses in a TOC1-dependent manner, but experiments with phytochrome-deficient lines revealed that the effects of TOC1 deficiency under drought cannot be attributed to changes in red/far-red light perception alone. Taken together, these results elucidate the sophisticated, tissue-dependent role of the circadian clock in maintaining fitness in the face of long-term abiotic stresses such as drought.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 28 Jan 2021
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Life Sciences > Physiology
Life Sciences > Genetics
Life Sciences > Plant Science
Uncontrolled Keywords:Plant Science, Genetics, Physiology
Language:English
Date:1 September 2019
Deposited On:28 Jan 2021 10:42
Last Modified:27 Jan 2022 05:13
Publisher:American Society of Plant Biologists
ISSN:0032-0889
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1104/pp.19.00286
Project Information:
  • : FunderFP7
  • : Grant ID293926
  • : Project TitleCLOCKWORKGREEN - Ecological performance of arrhythmic plants in nature