Header

UZH-Logo

Maintenance Infos

Real-time observation of ligand-induced allosteric transitions in a PDZ domain


Bozovic, Olga; Zanobini, Claudio; Gulzar, Adnan; Jankovic, Brankica; Buhrke, David; Post, Matthias; Wolf, Steffen; Stock, Gerhard; Hamm, Peter (2020). Real-time observation of ligand-induced allosteric transitions in a PDZ domain. Proceedings of the National Academy of Sciences of the United States of America, 117(42):26031-26039.

Abstract

While allostery is of paramount importance for protein regulation, the underlying dynamical process of ligand (un)binding at one site, resulting time evolution of the protein structure, and change of the binding affinity at a remote site are not well understood. Here the ligand-induced conformational transition in a widely studied model system of allostery, the PDZ2 domain, is investigated by transient infrared spectroscopy accompanied by molecular dynamics simulations. To this end, an azobenzene-derived photoswitch is linked to a peptide ligand in a way that its binding affinity to the PDZ2 domain changes upon switching, thus initiating an allosteric transition in the PDZ2 domain protein. The subsequent response of the protein, covering four decades of time, ranging from ∼1 ns to ∼μs, can be rationalized by a remodeling of its rugged free-energy landscape, with very subtle shifts in the populations of a small number of structurally well-defined states. It is proposed that structurally and dynamically driven allostery, often discussed as limiting scenarios of allosteric communication, actually go hand-in-hand, allowing the protein to adapt its free-energy landscape to incoming signals.

Abstract

While allostery is of paramount importance for protein regulation, the underlying dynamical process of ligand (un)binding at one site, resulting time evolution of the protein structure, and change of the binding affinity at a remote site are not well understood. Here the ligand-induced conformational transition in a widely studied model system of allostery, the PDZ2 domain, is investigated by transient infrared spectroscopy accompanied by molecular dynamics simulations. To this end, an azobenzene-derived photoswitch is linked to a peptide ligand in a way that its binding affinity to the PDZ2 domain changes upon switching, thus initiating an allosteric transition in the PDZ2 domain protein. The subsequent response of the protein, covering four decades of time, ranging from ∼1 ns to ∼μs, can be rationalized by a remodeling of its rugged free-energy landscape, with very subtle shifts in the populations of a small number of structurally well-defined states. It is proposed that structurally and dynamically driven allostery, often discussed as limiting scenarios of allosteric communication, actually go hand-in-hand, allowing the protein to adapt its free-energy landscape to incoming signals.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 02 Feb 2021
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Health Sciences > Multidisciplinary
Uncontrolled Keywords:Multidisciplinary
Language:English
Date:20 October 2020
Deposited On:02 Feb 2021 12:43
Last Modified:03 Feb 2021 21:02
Publisher:National Academy of Sciences
ISSN:0027-8424
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.2012999117
PubMed ID:33020277

Download

Closed Access: Download allowed only for UZH members

Content: Accepted Version
Filetype: PDF - Registered users only until 5 May 2021
Size: 5MB
View at publisher
Embargo till: 2021-05-05