Abstract
The alternative sigma factor sigma(B) of Staphylococcus aureus controls the expression of multiple genes, including virulence determinants and global regulators; promotes capsule production; and increases the resistance levels of methicillin-resistant S. aureus (MRSA) and glycopeptide-intermediate-resistant S. aureus (GISA) strains. We show here that deletion of the sigma(B)-controlled yabJ-spoVG operon, which codes for potential downstream regulators of sigma(B), abolished capsule synthesis and reduced resistance in MRSA and GISA to the same extent that sigma(B) inactivation did. Introduction of the yabJ-spoVG operon in trans restored the original phenotype. By genetic manipulations, we show that SpoVG but not YabJ is required for complementation. We therefore postulate that SpoVG is the major factor of the yabJ-spoVG operon required in S. aureus for capsule formation and antibiotic resistance.