Header

UZH-Logo

Maintenance Infos

Activation of Guinea Pig Irregular Semicircular Canal Afferents by 100 Hz Vibration: Clinical Implications for Vibration-induced Nystagmus and Vestibular-evoked Myogenic Potentials


Dlugaiczyk, Julia; Burgess, Ann M; Curthoys, Ian S (2020). Activation of Guinea Pig Irregular Semicircular Canal Afferents by 100 Hz Vibration: Clinical Implications for Vibration-induced Nystagmus and Vestibular-evoked Myogenic Potentials. Otology & Neurotology, 41(7):e961-e970.

Abstract

Hypothesis: Bone-conducted vibration (BCV) at 100 Hz causes endolymph displacement at hair cell stereocilia in semicircular canal (SCC) ducts of the intact bony labyrinth resulting in activation of irregularly discharging afferent neurons.

Background: Suprathreshold 100 Hz BCV is employed in the clinic to evoke skull vibration-induced nystagmus, an indicator for peripheral vestibular asymmetry. Recently, this stimulus has also been used in vestibular-evoked myogenic potentials, a selective test for otolithic function.

Methods: We performed extracellular recordings from utricular and SCC afferents in guinea pigs during application of suprathreshold BCV stimuli (100-500 Hz) to the animal's skull. Vibration was administered in a way that the animal, the vibrator, and the recording electrode moved as one.

Results: In summary, 19 of 43 recorded SCC afferents displayed a stimulus- and phase-locked increase in firing during stimulation at 100 Hz BCV with no perstimulatory adaptation and no poststimulatory silencing. All of the 19 activated SCC afferents had an irregular resting discharge. Neuronal activation of SCC afferents was less pronounced at 200 Hz and largely absent at 500 Hz. On the contrary, a stimulus- and phase-locked increase in firing was observed for irregularly discharging utricular neurons at all frequencies tested.

Conclusions: At intensities usually applied in the clinic, 500 Hz BCV is a largely selective otolithic stimulus, while 100 Hz BCV can activate both otolith and SCC afferents. Therefore, while 100 Hz BCV is ideally suited for evoking skull vibration-induced nystagmus in peripheral vestibular asymmetry, it is not recommended for vestibular-evoked myogenic potentials, as it lacks otolithic specificity.

Abstract

Hypothesis: Bone-conducted vibration (BCV) at 100 Hz causes endolymph displacement at hair cell stereocilia in semicircular canal (SCC) ducts of the intact bony labyrinth resulting in activation of irregularly discharging afferent neurons.

Background: Suprathreshold 100 Hz BCV is employed in the clinic to evoke skull vibration-induced nystagmus, an indicator for peripheral vestibular asymmetry. Recently, this stimulus has also been used in vestibular-evoked myogenic potentials, a selective test for otolithic function.

Methods: We performed extracellular recordings from utricular and SCC afferents in guinea pigs during application of suprathreshold BCV stimuli (100-500 Hz) to the animal's skull. Vibration was administered in a way that the animal, the vibrator, and the recording electrode moved as one.

Results: In summary, 19 of 43 recorded SCC afferents displayed a stimulus- and phase-locked increase in firing during stimulation at 100 Hz BCV with no perstimulatory adaptation and no poststimulatory silencing. All of the 19 activated SCC afferents had an irregular resting discharge. Neuronal activation of SCC afferents was less pronounced at 200 Hz and largely absent at 500 Hz. On the contrary, a stimulus- and phase-locked increase in firing was observed for irregularly discharging utricular neurons at all frequencies tested.

Conclusions: At intensities usually applied in the clinic, 500 Hz BCV is a largely selective otolithic stimulus, while 100 Hz BCV can activate both otolith and SCC afferents. Therefore, while 100 Hz BCV is ideally suited for evoking skull vibration-induced nystagmus in peripheral vestibular asymmetry, it is not recommended for vestibular-evoked myogenic potentials, as it lacks otolithic specificity.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Otorhinolaryngology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Otorhinolaryngology
Life Sciences > Sensory Systems
Health Sciences > Neurology (clinical)
Uncontrolled Keywords:Sensory Systems, Otorhinolaryngology, Clinical Neurology
Language:English
Date:1 August 2020
Deposited On:04 Feb 2021 14:48
Last Modified:05 Feb 2021 21:05
Publisher:Lippincott Williams & Wilkins
ISSN:1531-7129
OA Status:Closed
Publisher DOI:https://doi.org/10.1097/mao.0000000000002791
PubMed ID:32658114

Download

Full text not available from this repository.
View at publisher

Get full-text in a library