Header

UZH-Logo

Maintenance Infos

Mammalian intestinal allometry, phylogeny, trophic level and climate


Duque-Correa, Maria; Codron, Daryl; Meloro, Carlo; McGrosky, Amanda; Schiffmann, Christian; Edwards, Mark; Clauss, Marcus (2021). Mammalian intestinal allometry, phylogeny, trophic level and climate. Proceedings of the Royal Society of London, Series B: Biological Sciences, 288:20202888.

Abstract

An often-stated ecomorphological assumption that has the status of ‘textbook knowledge’ is that the dimensions of the digestive tract correlate with diet, where herbivores—consuming diets of lower digestibility—have longer intestinal tracts than faunivores—consuming diets of higher digestibility. However, statistical approaches have so far failed to demonstrate this link. Here, we collated data on the length of intestinal sections and body mass of 519 mammal species, and test for various relationships with trophic, climatic and other biological characteristics. All models showed a strong phylogenetic signal. Scaling relationships with body mass showed positive allometry at exponents greater than 0.33, except for the caecum, which is particularly large in smaller species. Body mass was more tightly linked to small intestine than to large intestine length. Adding a diet proxy to the relationships increased model fit for all intestinal sections, except for the small intestine when accounting for phylogeny. Thus, the diet has a main effect on the components of the large intestine, with longer measures in herbivores. Additionally, measures of habitat aridity had a positive relationship with large intestine length. The small intestine was longer in species from colder habitats at higher latitudes, possibly facilitating the processing of peak intake rates during the growing season. This study corroborates intuitive expectations on digestive tract anatomy, while the dependence of significant results on large sample sizes and inclusion of specific taxonomic groups indicates that the relationships cannot be considered fixed biological laws.

Abstract

An often-stated ecomorphological assumption that has the status of ‘textbook knowledge’ is that the dimensions of the digestive tract correlate with diet, where herbivores—consuming diets of lower digestibility—have longer intestinal tracts than faunivores—consuming diets of higher digestibility. However, statistical approaches have so far failed to demonstrate this link. Here, we collated data on the length of intestinal sections and body mass of 519 mammal species, and test for various relationships with trophic, climatic and other biological characteristics. All models showed a strong phylogenetic signal. Scaling relationships with body mass showed positive allometry at exponents greater than 0.33, except for the caecum, which is particularly large in smaller species. Body mass was more tightly linked to small intestine than to large intestine length. Adding a diet proxy to the relationships increased model fit for all intestinal sections, except for the small intestine when accounting for phylogeny. Thus, the diet has a main effect on the components of the large intestine, with longer measures in herbivores. Additionally, measures of habitat aridity had a positive relationship with large intestine length. The small intestine was longer in species from colder habitats at higher latitudes, possibly facilitating the processing of peak intake rates during the growing season. This study corroborates intuitive expectations on digestive tract anatomy, while the dependence of significant results on large sample sizes and inclusion of specific taxonomic groups indicates that the relationships cannot be considered fixed biological laws.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

2 downloads since deposited on 10 Feb 2021
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2021
Deposited On:10 Feb 2021 17:17
Last Modified:10 Feb 2021 17:17
Publisher:Royal Society Publishing
ISSN:0962-8452
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1098/rspb.2020.2888
Project Information:
  • : FunderSNF
  • : Grant IDCRSII5_189970/1
  • : Project Title

Download

Closed Access: Download allowed only for UZH members

Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 850kB
View at publisher