Header

UZH-Logo

Maintenance Infos

Selective extinction against redundant species buffers functional diversity


Pimiento, Catalina; Bacon, Christine D; Silvestro, Daniele; Hendy, Austin; Jaramillo, Carlos; Zizka, Alexander; Meyer, Xavier; Antonelli, Alexandre (2020). Selective extinction against redundant species buffers functional diversity. Proceedings of the Royal Society of London, Series B: Biological Sciences, 287(1931):20201162.

Abstract

The extinction of species can destabilize ecological processes. A way to assess the ecological consequences of species loss is by examining changes in functional diversity. The preservation of functional diversity depends on the range of ecological roles performed by species, or functional richness, and the number of species per role, or functional redundancy. However, current knowledge is based on short timescales and an understanding of how functional diversity responds to long-term biodiversity dynamics has been limited by the availability of deep-time, trait-based data. Here, we compile an exceptional trait dataset of fossil molluscs from a 23-million-year interval in the Caribbean Sea (34 011 records, 4422 species) and develop a novel Bayesian model of multi-trait-dependent diversification to reconstruct mollusc (i) diversity dynamics, (ii) changes in functional diversity, and (iii) extinction selectivity over the last 23 Myr. Our results identify high diversification between 23–5 Mya, leading to increases in both functional richness and redundancy. Conversely, over the last three million years, a period of high extinction rates resulted in the loss of 49% of species but only 3% of functional richness. Extinction rates were significantly higher in small, functionally redundant species suggesting that competition mediated the response of species to environmental change. Taken together, our results identify long-term diversification and selective extinction against redundant species that allowed functional diversity to grow over time, ultimately buffering the ecological functions of biological communities against extinction.

Abstract

The extinction of species can destabilize ecological processes. A way to assess the ecological consequences of species loss is by examining changes in functional diversity. The preservation of functional diversity depends on the range of ecological roles performed by species, or functional richness, and the number of species per role, or functional redundancy. However, current knowledge is based on short timescales and an understanding of how functional diversity responds to long-term biodiversity dynamics has been limited by the availability of deep-time, trait-based data. Here, we compile an exceptional trait dataset of fossil molluscs from a 23-million-year interval in the Caribbean Sea (34 011 records, 4422 species) and develop a novel Bayesian model of multi-trait-dependent diversification to reconstruct mollusc (i) diversity dynamics, (ii) changes in functional diversity, and (iii) extinction selectivity over the last 23 Myr. Our results identify high diversification between 23–5 Mya, leading to increases in both functional richness and redundancy. Conversely, over the last three million years, a period of high extinction rates resulted in the loss of 49% of species but only 3% of functional richness. Extinction rates were significantly higher in small, functionally redundant species suggesting that competition mediated the response of species to environmental change. Taken together, our results identify long-term diversification and selective extinction against redundant species that allowed functional diversity to grow over time, ultimately buffering the ecological functions of biological communities against extinction.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

16 downloads since deposited on 11 Feb 2021
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Paleontological Institute and Museum
Dewey Decimal Classification:560 Fossils & prehistoric life
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Immunology and Microbiology
Physical Sciences > General Environmental Science
Life Sciences > General Agricultural and Biological Sciences
Uncontrolled Keywords:General Biochemistry, Genetics and Molecular Biology, General Immunology and Microbiology, General Agricultural and Biological Sciences, General Environmental Science, General Medicine
Language:English
Date:29 July 2020
Deposited On:11 Feb 2021 09:55
Last Modified:27 Jan 2022 05:44
Publisher:Royal Society Publishing
ISSN:0962-8452
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1098/rspb.2020.1162
Project Information:
  • : FunderH2020
  • : Grant ID663830
  • : Project TitleSIRCIW - Strengthening International Research Capacity in Wales
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)