Header

UZH-Logo

Maintenance Infos

How plants might recognize rhizospheric bacterial volatiles


Bailly, Aurélien (2020). How plants might recognize rhizospheric bacterial volatiles. In: Ryu, Choong-Min; Weisskopf, Laure; Piechulla, Birgit. Bacterial volatile compounds as mediators of airborne interactions. Singapore: Springer, 139-165.

Abstract

In contrast to animals, plants possess neither olfactory organs nor a central nervous system. However, they do perceive and systemically react to volatile stimuli. Such function serves in monitoring the immediate and remote environments and translates into optimized responses to biotic and abiotic stresses. While the ecological relevance of volatile-mediated plant–plant and plant–insect interactions is today unquestioned, both above- and below-ground plant–microbe communication through VOCs has only gained attention recently. The common metabolic origins that yield the vast chemical diversity of plant and microbes allow for a substantial overlap between plant and microbial volatile species. Hence, it remains unclear if plants recognize and/or distinguish plant-like from foreign cues. The identities of the cellular components ensuring such recognition are even more obscure. Easy-to-score plant outputs in response to microbial VOCs elicitation, like plant growth promotion and innate immunity stimulation, will be instrumental to pinpointing VOCs-sensing proteins. Several major phytohormones have a gaseous nature and dedicated perception machineries that could serve as a basis to envisage how volatile semiochemicals might be sensed by plants. If volatile-mediated communication represents an ancestral cellular feature, VOCs perception and signalling might rely on basal protein families and define a universal chemical language.

Abstract

In contrast to animals, plants possess neither olfactory organs nor a central nervous system. However, they do perceive and systemically react to volatile stimuli. Such function serves in monitoring the immediate and remote environments and translates into optimized responses to biotic and abiotic stresses. While the ecological relevance of volatile-mediated plant–plant and plant–insect interactions is today unquestioned, both above- and below-ground plant–microbe communication through VOCs has only gained attention recently. The common metabolic origins that yield the vast chemical diversity of plant and microbes allow for a substantial overlap between plant and microbial volatile species. Hence, it remains unclear if plants recognize and/or distinguish plant-like from foreign cues. The identities of the cellular components ensuring such recognition are even more obscure. Easy-to-score plant outputs in response to microbial VOCs elicitation, like plant growth promotion and innate immunity stimulation, will be instrumental to pinpointing VOCs-sensing proteins. Several major phytohormones have a gaseous nature and dedicated perception machineries that could serve as a basis to envisage how volatile semiochemicals might be sensed by plants. If volatile-mediated communication represents an ancestral cellular feature, VOCs perception and signalling might rely on basal protein families and define a universal chemical language.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

1 download since deposited on 11 Feb 2021
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:1 January 2020
Deposited On:11 Feb 2021 09:53
Last Modified:11 Feb 2021 09:53
Publisher:Springer
ISBN:978-981-15-7292-0
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/978-981-15-7293-7_5

Download

Closed Access: Download allowed only for UZH members