Header

UZH-Logo

Maintenance Infos

Molecular characterisation of multi-drug resistant Escherichia coli of bovine origin


Anes, João; Nguyen, Scott V; Eshwar, Athmanya K; McCabe, Evonne; Macori, Guerrino; Hurley, Daniel; Lehner, Angelika; Fanning, Séamus (2020). Molecular characterisation of multi-drug resistant Escherichia coli of bovine origin. Veterinary Microbiology, 242:108566.

Abstract

Antimicrobial resistance reported in bacteria of animal origin is considered a major challenge to veterinary public health. In this study, the genotypic and phenotypic characterisation of twelve Escherichia coli isolates of bovine origin is reported. Twelve bacterial isolates of animal origin were selected from a previous study based on their multidrug resistant (MDR) profile. Efflux pump activity was measured using ethidium bromide (EtBr) and the biofilm forming ability of the individual strains was assessed using a number of phenotypic assays. All isolates were resistant to tetracyclines and a number of isolates expressed resistance to fluoroquinolones which was also confirmed in silico by the presence of these resistance markers. Amino acid substitutions in the quinolone resistance-determining regions were identified in all isolates and the presence of several siderophores were also noted. Whole genomesequence (WGS) data showed different STs that were not associated with epidemic STs or virulent clonal complexes. Seven isolates formed biofilms in minimal media with some isolates showing better adaptation at 25 °C while others at 37 °C. The capacity to efflux EtBr was found to be high in 4 isolates and impaired in 4 others. The pathogenicity of three selected isolates was assessed in zebrafish embryo infection models, revealing isolates CFS0355 and CFS0356 as highly pathogenic. These results highlight the application of NGS technologies combined with phenotypic assays in providing a better understanding of E. coli of bovine origin and their adaptation to this niche environment.

Abstract

Antimicrobial resistance reported in bacteria of animal origin is considered a major challenge to veterinary public health. In this study, the genotypic and phenotypic characterisation of twelve Escherichia coli isolates of bovine origin is reported. Twelve bacterial isolates of animal origin were selected from a previous study based on their multidrug resistant (MDR) profile. Efflux pump activity was measured using ethidium bromide (EtBr) and the biofilm forming ability of the individual strains was assessed using a number of phenotypic assays. All isolates were resistant to tetracyclines and a number of isolates expressed resistance to fluoroquinolones which was also confirmed in silico by the presence of these resistance markers. Amino acid substitutions in the quinolone resistance-determining regions were identified in all isolates and the presence of several siderophores were also noted. Whole genomesequence (WGS) data showed different STs that were not associated with epidemic STs or virulent clonal complexes. Seven isolates formed biofilms in minimal media with some isolates showing better adaptation at 25 °C while others at 37 °C. The capacity to efflux EtBr was found to be high in 4 isolates and impaired in 4 others. The pathogenicity of three selected isolates was assessed in zebrafish embryo infection models, revealing isolates CFS0355 and CFS0356 as highly pathogenic. These results highlight the application of NGS technologies combined with phenotypic assays in providing a better understanding of E. coli of bovine origin and their adaptation to this niche environment.

Statistics

Citations

Altmetrics

Downloads

1 download since deposited on 15 Feb 2021
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Food Safety and Hygiene
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Health Sciences > General Veterinary
Uncontrolled Keywords:Microbiology, General Veterinary, General Medicine, Antimicrobial resistance; Biofilm; Escherichia coli; Whole genome analysis.
Language:English
Date:1 March 2020
Deposited On:15 Feb 2021 16:12
Last Modified:16 Feb 2021 21:01
Publisher:Elsevier
ISSN:0378-1135
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.vetmic.2019.108566

Download

Closed Access: Download allowed only for UZH members

Content: Accepted Version
Language: English
Filetype: PDF - Registered users only until 1 March 2021
Size: 2MB
View at publisher
Embargo till: 2021-03-01