Streptococcus (S.) suis is a globally important swine pathogen, which comprises certain zoonotic serotypes. In this study, a detailed characterization of 88 porcine S. suis isolates was performed by analyzing capsular (cps) types, multilocus sequence typing (MLST) and investigation of the minimum core genome (MCG). In order to focus on the virulence potential of presumable invasive disease-associated S. suis isolates, virulence-associated gene profiles were assessed followed by screening a chosen subset of S. suis strains with a molecular pathotyping tool. Results showed a high genetic variability within this strain collection. In total, seventeen cps types were identified with a predominance of cps type 9 (15.9%) and 6 (14.8%). MLST revealed 48 sequence types (STs) including 41 novel ones. The population structure of S. suis was heterogenous and isolates belonged to eight different clonal complexes (CCs) including CC28 (9.1%), CC1109 (8%), CC13/149 (6.8%), CC1237 (5.7%), CC1 (3.4%), CC17 (3.4%), CC87 (2.3%), and CC1112 (1.1%), whereas a significant portion of isolates (60.2%) could not be assigned to any described CCs. Virulence-associated markers, namely extracellular protein factor (epf), muramidase-released protein (mrp), and suilysin (sly), showed a link with STs rather than with cps types. With this study an expanded knowledge about the population structure and the genetic diversity of S. suis could be achieved, which helps to contribute to an optimal public health surveillance system by promoting a focus on strains with an increased virulence and zoonotic potential.
Abstract
Streptococcus (S.) suis is a globally important swine pathogen, which comprises certain zoonotic serotypes. In this study, a detailed characterization of 88 porcine S. suis isolates was performed by analyzing capsular (cps) types, multilocus sequence typing (MLST) and investigation of the minimum core genome (MCG). In order to focus on the virulence potential of presumable invasive disease-associated S. suis isolates, virulence-associated gene profiles were assessed followed by screening a chosen subset of S. suis strains with a molecular pathotyping tool. Results showed a high genetic variability within this strain collection. In total, seventeen cps types were identified with a predominance of cps type 9 (15.9%) and 6 (14.8%). MLST revealed 48 sequence types (STs) including 41 novel ones. The population structure of S. suis was heterogenous and isolates belonged to eight different clonal complexes (CCs) including CC28 (9.1%), CC1109 (8%), CC13/149 (6.8%), CC1237 (5.7%), CC1 (3.4%), CC17 (3.4%), CC87 (2.3%), and CC1112 (1.1%), whereas a significant portion of isolates (60.2%) could not be assigned to any described CCs. Virulence-associated markers, namely extracellular protein factor (epf), muramidase-released protein (mrp), and suilysin (sly), showed a link with STs rather than with cps types. With this study an expanded knowledge about the population structure and the genetic diversity of S. suis could be achieved, which helps to contribute to an optimal public health surveillance system by promoting a focus on strains with an increased virulence and zoonotic potential.
TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.