Header

UZH-Logo

Maintenance Infos

Giant Planet Formation Models with a Self-consistent Treatment of the Heavy Elements


Valletta, Claudio; Helled, Ravit (2020). Giant Planet Formation Models with a Self-consistent Treatment of the Heavy Elements. The Astrophysical Journal, 900(2):133.

Abstract

We present a new numerical framework to model the formation and evolution of giant planets. The code is based on the further development of the stellar evolution toolkit Modules for Experiments in Stellar Astrophysics. The model includes the dissolution of the accreted planetesimals/pebbles, which are assumed to be made of water ice, in the planetary gaseous envelope, and the effect of envelope enrichment on the planetary growth and internal structure is computed self-consistently. We apply our simulations to Jupiter and investigate the impact of different heavy-element and gas accretion rates on its formation history. We show that the assumed runaway gas accretion rate significantly affects the planetary radius and luminosity. It is confirmed that heavy-element enrichment leads to shorter formation timescales due to more efficient gas accretion. We find that with heavy-element enrichment Jupiter's formation timescale is compatible with typical disks' lifetimes even when assuming a low heavy-element accretion rate (oligarchic regime). Finally, we provide an approximation for the heavy-element profile in the innermost part of the planet, providing a link between the internal structure and the planetary growth history.

Abstract

We present a new numerical framework to model the formation and evolution of giant planets. The code is based on the further development of the stellar evolution toolkit Modules for Experiments in Stellar Astrophysics. The model includes the dissolution of the accreted planetesimals/pebbles, which are assumed to be made of water ice, in the planetary gaseous envelope, and the effect of envelope enrichment on the planetary growth and internal structure is computed self-consistently. We apply our simulations to Jupiter and investigate the impact of different heavy-element and gas accretion rates on its formation history. We show that the assumed runaway gas accretion rate significantly affects the planetary radius and luminosity. It is confirmed that heavy-element enrichment leads to shorter formation timescales due to more efficient gas accretion. We find that with heavy-element enrichment Jupiter's formation timescale is compatible with typical disks' lifetimes even when assuming a low heavy-element accretion rate (oligarchic regime). Finally, we provide an approximation for the heavy-element profile in the innermost part of the planet, providing a link between the internal structure and the planetary growth history.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:9 September 2020
Deposited On:15 Feb 2021 08:56
Last Modified:16 Feb 2021 21:01
Publisher:IOP Publishing
ISSN:1538-4357
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3847/1538-4357/aba904

Download

Full text not available from this repository.
View at publisher

Get full-text in a library