Header

UZH-Logo

Maintenance Infos

Rapid functional optoacoustic micro-angiography in a burst mode


Hofmann, Urs A T; Rebling, Johannes; Estrada, Héctor; Subochev, Pavel; Razansky, Daniel (2020). Rapid functional optoacoustic micro-angiography in a burst mode. Optics letters, 45(9):2522.

Abstract

Optoacoustic microscopy (OAM) can image intrinsic optical absorption contrast at depths of several millimeters where state-of-the-art optical microscopy techniques fail due to intense light scattering in living tissues. Yet, wide adoption of OAM in biology and medicine is hindered by slow image acquisition speed, small field of view (FOV), and/or lack of spectral differentiation capacity of common system implementations. We report on a rapid acquisition functional optoacoustic micro-angiography approach that employs a burst-mode laser triggering scheme to simultaneously acquire multi-wavelength 3D images over an extended FOV covering 50mm×50mm in a single mechanical overfly scan, attaining 28 µm and 14 µm resolution in lateral and axial dimensions, respectively. Owing to an ultrawideband low-noise design featuring a spherically focused polyvinylidene difluoride transducer, we demonstrate imaging of human skin and underlying vasculature at up to 3.8 mm depth when using per-pulse laser energies of only 25 µJ without employing signal averaging. Overall, the developed system greatly enhances performance and usability of OAM for dermatologic and micro-angiographic studies.

Abstract

Optoacoustic microscopy (OAM) can image intrinsic optical absorption contrast at depths of several millimeters where state-of-the-art optical microscopy techniques fail due to intense light scattering in living tissues. Yet, wide adoption of OAM in biology and medicine is hindered by slow image acquisition speed, small field of view (FOV), and/or lack of spectral differentiation capacity of common system implementations. We report on a rapid acquisition functional optoacoustic micro-angiography approach that employs a burst-mode laser triggering scheme to simultaneously acquire multi-wavelength 3D images over an extended FOV covering 50mm×50mm in a single mechanical overfly scan, attaining 28 µm and 14 µm resolution in lateral and axial dimensions, respectively. Owing to an ultrawideband low-noise design featuring a spherically focused polyvinylidene difluoride transducer, we demonstrate imaging of human skin and underlying vasculature at up to 3.8 mm depth when using per-pulse laser energies of only 25 µJ without employing signal averaging. Overall, the developed system greatly enhances performance and usability of OAM for dermatologic and micro-angiographic studies.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

39 downloads since deposited on 16 Feb 2021
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology

04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Scopus Subject Areas:Physical Sciences > Atomic and Molecular Physics, and Optics
Uncontrolled Keywords:Atomic and Molecular Physics, and Optics
Language:English
Date:1 May 2020
Deposited On:16 Feb 2021 12:44
Last Modified:25 Nov 2023 02:49
Publisher:Optical Society of America
ISSN:0146-9592
OA Status:Green
Publisher DOI:https://doi.org/10.1364/ol.387630
PubMed ID:32356806
  • Content: Accepted Version