Header

UZH-Logo

Maintenance Infos

MicroRNA Mediated Cardioprotection - Is There a Path to Clinical Translation?


Nazari-Shafti, Timo Z; Exarchos, Vasileios; Biefer, Héctor Rodriguez Cetina; Cesarovic, Nikola; Meyborg, Heike; Falk, Volkmar; Emmert, Maximilian Y (2020). MicroRNA Mediated Cardioprotection - Is There a Path to Clinical Translation? Frontiers in Bioengineering and Biotechnology, 8:149.

Abstract

In the past 20 years, there have been several approaches to achieve cardioprotection or cardiac regeneration using a vast variety of cell therapies and remote ischemic pre-conditioning (RIPC). To date, substantial proof that either cell therapy or RIPC has the potential for clinically relevant cardiac repair or regeneration of cardiac tissue is still pending. Preclinical trials indicate that the secretome of cells in situ (during RIPC) as well as of transplanted cells may exhibit cardioprotective properties in the acute setting of cardiac injury. The secretome generally consists of cell-specific cytokines and extracellular vesicles (EVs) containing microRNAs (miRNAs). It is currently hypothesized that a subset of known miRNAs play a crucial part in the facilitation of cardioprotective effects. miRNAs are small non-coding RNA molecules that inhibit post-transcriptional translation of messenger RNAs (mRNAs) and play an important role in gene translation regulation. It is also known that one miRNAs usually targets multiple mRNAs. This makes predictability of pharmacokinetics and mechanism of action very difficult and could in part explain the inferior performance of various progenitor cells in clinical studies. Identification of miRNAs involved in cardioprotection and remodeling, the composition of miRNA profiles, and the exact mechanism of action are important to the design of future cell-based but also cell-free cardioprotective therapeutics. This review will give a description of miRNA with cardioprotective properties and a current overview on known mechanism of action and potential missing links. Additionally, we will give an outlook on the potential for clinical translation of miRNAs in the setting of myocardial infarction and heart failure.

Abstract

In the past 20 years, there have been several approaches to achieve cardioprotection or cardiac regeneration using a vast variety of cell therapies and remote ischemic pre-conditioning (RIPC). To date, substantial proof that either cell therapy or RIPC has the potential for clinically relevant cardiac repair or regeneration of cardiac tissue is still pending. Preclinical trials indicate that the secretome of cells in situ (during RIPC) as well as of transplanted cells may exhibit cardioprotective properties in the acute setting of cardiac injury. The secretome generally consists of cell-specific cytokines and extracellular vesicles (EVs) containing microRNAs (miRNAs). It is currently hypothesized that a subset of known miRNAs play a crucial part in the facilitation of cardioprotective effects. miRNAs are small non-coding RNA molecules that inhibit post-transcriptional translation of messenger RNAs (mRNAs) and play an important role in gene translation regulation. It is also known that one miRNAs usually targets multiple mRNAs. This makes predictability of pharmacokinetics and mechanism of action very difficult and could in part explain the inferior performance of various progenitor cells in clinical studies. Identification of miRNAs involved in cardioprotection and remodeling, the composition of miRNA profiles, and the exact mechanism of action are important to the design of future cell-based but also cell-free cardioprotective therapeutics. This review will give a description of miRNA with cardioprotective properties and a current overview on known mechanism of action and potential missing links. Additionally, we will give an outlook on the potential for clinical translation of miRNAs in the setting of myocardial infarction and heart failure.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

15 downloads since deposited on 16 Feb 2021
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Biotechnology
Physical Sciences > Bioengineering
Health Sciences > Histology
Physical Sciences > Biomedical Engineering
Language:English
Date:2020
Deposited On:16 Feb 2021 14:33
Last Modified:27 Jan 2022 05:51
Publisher:Frontiers Research Foundation
ISSN:2296-4185
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fbioe.2020.00149
PubMed ID:32266222
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)