Header

UZH-Logo

Maintenance Infos

Fast Retrograde Access to Projection Neuron Circuits Underlying Vocal Learning in Songbirds


Abstract

Understanding the structure and function of neural circuits underlying speech and language is a vital step toward better treatments for diseases of these systems. Songbirds, among the few animal orders that share with humans the ability to learn vocalizations from a conspecific, have provided many insights into the neural mechanisms of vocal development. However, research into vocal learning circuits has been hindered by a lack of tools for rapid genetic targeting of specific neuron populations to meet the quick pace of developmental learning. Here, we present a viral tool that enables fast and efficient retrograde access to projection neuron populations. In zebra finches, Bengalese finches, canaries, and mice, we demonstrate fast retrograde labeling of cortical or dopaminergic neurons. We further demonstrate the suitability of our construct for detailed morphological analysis, for in vivo imaging of calcium activity, and for multi-color brainbow labeling.

Abstract

Understanding the structure and function of neural circuits underlying speech and language is a vital step toward better treatments for diseases of these systems. Songbirds, among the few animal orders that share with humans the ability to learn vocalizations from a conspecific, have provided many insights into the neural mechanisms of vocal development. However, research into vocal learning circuits has been hindered by a lack of tools for rapid genetic targeting of specific neuron populations to meet the quick pace of developmental learning. Here, we present a viral tool that enables fast and efficient retrograde access to projection neuron populations. In zebra finches, Bengalese finches, canaries, and mice, we demonstrate fast retrograde labeling of cortical or dopaminergic neurons. We further demonstrate the suitability of our construct for detailed morphological analysis, for in vivo imaging of calcium activity, and for multi-color brainbow labeling.

Statistics

Citations

Altmetrics

Downloads

0 downloads since deposited on 15 Feb 2021
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Uncontrolled Keywords:General Biochemistry, Genetics and Molecular Biology
Language:English
Date:1 November 2020
Deposited On:15 Feb 2021 14:42
Last Modified:18 Feb 2021 12:36
Publisher:Cell Press (Elsevier)
ISSN:2211-1247
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.celrep.2020.108364
Project Information:
  • : FunderH2020
  • : Grant ID750055
  • : Project TitleDESYNE - Development of synaptic networks in songbirds

Download

Gold Open Access

Download PDF  'Fast Retrograde Access to Projection Neuron Circuits Underlying Vocal Learning in Songbirds'.
Preview
Content: Published Version
Filetype: PDF
Size: 5MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)