Header

UZH-Logo

Maintenance Infos

Competing interaction partners modulate the activity of Sgs1 helicase during DNA end resection


Kasaciunaite, Kristina; Fettes, Fergus; Levikova, Maryna; Daldrop, Peter; Anand, Roopesh; Cejka, Petr; Seidel, Ralf (2019). Competing interaction partners modulate the activity of Sgs1 helicase during DNA end resection. EMBO Journal Online, 38(13):e101516.

Abstract

DNA double-strand break repair by homologous recombination employs long-range resection of the 5' DNA ends at the break points. In Saccharomyces cerevisiae, this process can be performed by the RecQ helicase Sgs1 and the helicase-nuclease Dna2. Though functional interplay between them has been shown, it remains unclear whether and how these proteins cooperate on the molecular level. Here, we resolved the dynamics of DNA unwinding by Sgs1 at the single-molecule level and investigated Sgs1 regulation by Dna2, the single-stranded DNA-binding protein RPA, and the Top3-Rmi1 complex. We found that Dna2 modulates the velocity of Sgs1, indicating that during end resection both proteins form a functional complex and couple their activities. Sgs1 drives DNA unwinding and feeds single-stranded DNA to Dna2 for degradation. RPA was found to regulate the processivity and the affinity of Sgs1 to the DNA fork, while Top3-Rmi1 modulated the velocity of Sgs1. We hypothesize that the differential regulation of Sgs1 activity by its protein partners is important to support diverse cellular functions of Sgs1 during the maintenance of genome stability.

Abstract

DNA double-strand break repair by homologous recombination employs long-range resection of the 5' DNA ends at the break points. In Saccharomyces cerevisiae, this process can be performed by the RecQ helicase Sgs1 and the helicase-nuclease Dna2. Though functional interplay between them has been shown, it remains unclear whether and how these proteins cooperate on the molecular level. Here, we resolved the dynamics of DNA unwinding by Sgs1 at the single-molecule level and investigated Sgs1 regulation by Dna2, the single-stranded DNA-binding protein RPA, and the Top3-Rmi1 complex. We found that Dna2 modulates the velocity of Sgs1, indicating that during end resection both proteins form a functional complex and couple their activities. Sgs1 drives DNA unwinding and feeds single-stranded DNA to Dna2 for degradation. RPA was found to regulate the processivity and the affinity of Sgs1 to the DNA fork, while Top3-Rmi1 modulated the velocity of Sgs1. We hypothesize that the differential regulation of Sgs1 activity by its protein partners is important to support diverse cellular functions of Sgs1 during the maintenance of genome stability.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 17 Feb 2021
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > General Neuroscience
Life Sciences > Molecular Biology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Immunology and Microbiology
Language:English
Date:1 July 2019
Deposited On:17 Feb 2021 07:44
Last Modified:01 Mar 2021 16:31
Publisher:Nature Publishing Group
ISSN:0261-4189
OA Status:Green
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.15252/embj.2019101516
PubMed ID:31268598

Download

Green Open Access

Download PDF  'Competing interaction partners modulate the activity of Sgs1 helicase during DNA end resection'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher