Header

UZH-Logo

Maintenance Infos

Methods to Study DNA End Resection II: Biochemical Reconstitution Assays


Pinto, Cosimo; Anand, Roopesh; Cejka, Petr (2018). Methods to Study DNA End Resection II: Biochemical Reconstitution Assays. In: Kruze, Zoe. Methods in Enzymology. United States and United Kingdom: Elsevier, 67-106.

Abstract

DNA end resection initiates the largely accurate repair of DNA double-strand breaks (DSBs) by homologous recombination. Specifically, recombination requires the formation of 3' overhangs at DSB sites, which is carried out by nucleases that specifically degrade 5'-terminated DNA. In most cases, DNA end resection is a two-step process, comprising of initial short-range followed by more processive long-range resection. In this chapter, we describe selected assays that reconstitute both the short- and long-range pathways. First, we define methods to study the exonuclease and endonuclease activities of the MRE11-RAD50-NBS1 (MRN) complex in conjunction with phosphorylated cofactor CtIP. This reaction is particularly important to initiate processing of DNA breaks and to recruit components belonging to the subsequent long-range pathway. Next, we describe assays that reconstitute the concerted reactions of Bloom (BLM) or Werner (WRN) helicases that function together with the DNA2 nuclease-helicase, and which are as a complex capable to resect DNA of kilobases in length. The reconstituted reactions allow us to understand how the resection pathways function at the molecular level. The assays will be invaluable to define regulatory mechanisms and to identify inhibitory compounds, which may be valuable in cancer therapy.

Abstract

DNA end resection initiates the largely accurate repair of DNA double-strand breaks (DSBs) by homologous recombination. Specifically, recombination requires the formation of 3' overhangs at DSB sites, which is carried out by nucleases that specifically degrade 5'-terminated DNA. In most cases, DNA end resection is a two-step process, comprising of initial short-range followed by more processive long-range resection. In this chapter, we describe selected assays that reconstitute both the short- and long-range pathways. First, we define methods to study the exonuclease and endonuclease activities of the MRE11-RAD50-NBS1 (MRN) complex in conjunction with phosphorylated cofactor CtIP. This reaction is particularly important to initiate processing of DNA breaks and to recruit components belonging to the subsequent long-range pathway. Next, we describe assays that reconstitute the concerted reactions of Bloom (BLM) or Werner (WRN) helicases that function together with the DNA2 nuclease-helicase, and which are as a complex capable to resect DNA of kilobases in length. The reconstituted reactions allow us to understand how the resection pathways function at the molecular level. The assays will be invaluable to define regulatory mechanisms and to identify inhibitory compounds, which may be valuable in cancer therapy.

Statistics

Citations

Dimensions.ai Metrics
7 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 15 Feb 2021
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Language:English
Date:2018
Deposited On:15 Feb 2021 17:25
Last Modified:16 Feb 2021 21:02
Publisher:Elsevier
Series Name:Methods in Enzymology
ISSN:0076-6879
ISBN:978-0-12-814429-9
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/bs.mie.2017.11.009
PubMed ID:29458776

Download

Closed Access: Download allowed only for UZH members