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Abstract—Edge arti cial intelligence hardware targets mainly  deployment when data is scarce and the memory needed to
inference networks that have been pretrained on massive datasets.store the samples is limited.

The eld of few-shot learning looks for methods that allow a In recent years, multiple approaches to solving few-shot

network to produce high accuracy even when only a few samples . .
of each class are available. Siamese networks can be used téearnlng problems have been proposed. Transfer learning [4]

tackle few-shot learning problems and are unique because they trains a network in a fully-supervised manner and then ne-
do not require retraining on the new samples of the new classes. tunes the last layer on the novel classes or tasks. Data augmen-
Therefore they are suitable for edge hardware accelerators which tation methods [5], [6] augment a small labelled dataset and
often do not include on-chip training capabilities. turn the few-shot learning problem into a standard supervised

This work describes improvements to a baseline Siamese . - -
network and benchmarking of the improved network on edge learning problem. Meta-learning [7] allows for rapid ne-

platforms. The modi cations to the baseline network included tuning of the model parameters by training a general meta-
adding multi-resolution kernels, a hybrid training process as learner on a variety of tasks. The above-mentioned methods
well a different embedding similarity computation method. This are not suitable for traditional edge implementations on in-

gg:‘c’)"sosfkfzg‘t"fs :tr; ?r‘]’e;agewiccUlrzcgo'tmcﬁgcs"éie(';etirc‘)tn"{a‘;pk tOBgr?z/;’] ference accelerators because they require retraining whenever
Y. ' new classes of objects become available.

marking results using three edge computing platforms (NVIDIA . .
Jetson Nano, Coral Edge TPU and a custom convolutional neural ~ Siamese networks [8], [9] are another type of algorithm used
network accelerator) show that a Siamese classi er can run on for few-shot learning. Unlike standard classiers, Siamese
these devices at reasonable frame rates for real-time performance, networks can classify samples from novel classes without
between 3 frames per second (FPS) on Jetson Nano and 60 FP%equiring any retraining for the new classes. Because no

on the Edge TPU. By increasing the weight sparsity during . . . . . :
training, the inference time of a network with 25% weight retraining is needed, this architecture is suitable for edge

sparsity increases by 10 FPS but with only 1% drop in accuracy. devices which typically do not_include_ on-chip learning. These
Index Terms—one-shot learning, few-shot learning, edge in- networks are part of the metric learning approach to few-shot

telligence, deep networks, computer vision, Siamese networks,learning problems and are trained to recognize the similarity

hardware accelerators, edge computing or dissimilarity between sample pairs. Training is rst carried
out of ine on a vast number of sample pairs that belong either
. INTRODUCTION to the same class or to different classes. After the Siamese

Edge arti cial intelligence (Al) hardware accelerators usunetwork Is deployed, data to be classied are compared to
9 . 9 (AD) ) ~labelled representative examples for each class, calletb-
ally target inference networks that have been trained of i

L "Spesin the rest of the paper. The incoming samples need not
on large servers [1]. Retraining these networks once they 5 bap 9 P

. - ; ong to classes seen during training. The winning class is
?etfl?geg 'Snbstcvcgsi and denerg); prfr}'br:tl\é\?v' ylllhg]NRIaNe He one corresponding to the highest similarity between the
€lrained on new data, a eﬁ",p eu? etwork ( ).Cas%mple of interest and the saved prototype.
learn new object classes but “forgets” most of the previous
knowledge it had accumulated, unless previous data is fedA0 Contributions

the network _along with the new _data [21 . Although Siamese networks can classify novel objects with-
Incorporating new classes without extensive amounts gf

: p L ) _ > 0ut retraining, the classi cation accuracy of these networks on
samples and without requiring retraining on the entire origingl nown classes is worse than that of incremental learning

dataset is an active area of research in the eld of feW'ShQFgorithms such as iCaRL [10]. In [11], we proposed sev-

learning. In this eld, the number of stored samples in MOgL 3| o i cations to baseline Siamese networks to address
algorithms is fewer than 20, usually either 1 or 5 [3]. Thigye accuracy gap: different kemnel size streams within one
obviates the_ need to accumula_te a large number Of_ Sammﬁﬁer, concatenating the branch embeddings, adding several
before training the system, which would be useful in edqgye g that combine the two embeddings before the similarity

output, as well as a hybrid training process which makes
This work is partially funded by the Samsung Institute of Technology, the P y 9 p

SNSF National Centre of Competence in Research (NCCR) Robotics, and Yre of both classi cation and S|m|Iar|ty. By Comb'nmg the
SNSF BRIDGE grant no. 40B2-081010. four approaches, we showed state-of-the-art accuracy on one-



shot classi cation with Siamese networks on four benchmark a) - 6uX)
datasets, Omniglot [12], Tiny-Imagenet [13], CIFAR100 [14], X, —  Comottona netor

and Roshambo [15] sharedv\:/eights l —I— 1G,(6)- Gu(Xy)l —.

This study provides the following contributions to the eld

of few-shot learning: % ) !
X —

1= same
1) We benchmark Siamese networks on three different edge 0= diforent
devices, speci cally, the NVIDIA Jetson Nano [16], the
Coral Edge TPU [17] as well as a custom hardware
CNN accelerator to evaluate the real-time performance

Classification
Gu(X)) — tput X
Convolutional network | — k R

of a few-shot learning algorithm on edge platforms. We +ared woicht Sigmoid
. .. . shared weights _ .
believe this is one of the rst studies to show an edge l W | 16,X)- GuX
hardware implementation of this algorithm. X, — P |
Gu(Xy) —

2) We propose several modications to the baseline output X, 17 same
Siamese networks: a hybrid training process which in-
cludes both classi cation and Sim”arity_based Iossels:1 1. General Siamese network architecture. Grey components are onl

. . . ig. 1. i itecture. Y y

concatenation of _branCh embEddmgS’_ addmg Seveﬁéid during training. (a) Networks are trained using only a similarity loss. (b)
layers that combine the two embeddings before theth similarity and classi cation losses are employed at training.
similarity output, as well as a branch architecture that
contains multi-resolution convolutional layers. These o
modi cations lead to an improvement in 5-class clasidentity of a query alphabet symbol. Other similarity-based
si cation accuracy by up to 22.6%. few-shot learning methods include Matching Networks [28],
Siamese network by performing training with reducelranch of few-shot learning aims to nd good initializations of
bit precision and weight matrices with high sparsit)'rhe employed models so that novel classes can be learned by
levels. adapting the existing model using only a limited number of

4) We compare the inference times for a Siamese netwsigmples [20], [30], [31]. The eld of co-saliency detection
against a one-branch classi cation network and arguygsembles Siamese networks in their endeavour to uncover

why Siamese networks are a good approach to few-sh@intly informative areas in images. Some of the approaches
classi cation. suggested in [32], [33] could be applied to the eld of few-shot
heearning to extend its ability to perform object identi cation

Section Il discusses relevant work, Section Ill presents t ¢ retraini
proposed improvements, the datasets and the edge devices M\ggﬁ’u retraining.

in the study, while Section V describes the algorithmic an e appeal .Of Slamese network; Is that, _unI|ke many of
benchmarking results. the aforementioned few-shot learning algorithms, Siamese

networks are a simple, scalable algorithm that does not require

TABLE | re-training when new classes become available. As they do
COMPARISON BETWEEN DIFFERENT STATEOF-ART ALGORITHMS AND not require on-chip training resources, these networks should

SIAMESE NETWORKS ONOMNIGLOT FOR 1-SHOT 5-WAY CLASSIFICATION — be easily adaptable to inference-focused edge hardware ac-
celerators such as the Application-Speci ¢ Integrated Circuits

Accuracy _ Retraining required? (ASICs) and Field-Programmable Gate Array (FPGA)-based

Matching networks [18] 98.1% No accelerators [34]-[39]. Commercial edge computing platforms
Prototypical networks [19] 98.8% No such as the NVIDIA Jetson series.§, Nano, TX2) have an

MAML (meta-learning) [20] 98.7% Yes on-board, energy-ef cient GPU to accelerate DNNs at runtime.

Siamese networks (ours) | 99.0% No Siamese networks are well-suited for re-identifying a sample

that has been presented previously. Example tasks that are
useful for edge applications include the re-identi cation of
Il. RELEVANT WORK a tracked object across multiple camera views [23] or of a
Siamese networks (SNs) were introduced by [8] for solvingerson's voice for speaker veri cation [40]. A recent study
a signature veri cation task. The idea of computing similaritgvaluated the inference and training time of ResNet-50 and
between two samples using a deep arti cial neural netwoMobileNet-v2 on a re-identi cation task using the NVIDIA
(ANN) was then quickly adopted in applications such aXavier which burns more power than the edge platforms used
face veri cation [21], few-shot classi cation [9], person re-in this work [41].
identi cation [22], [23], image retrieval [24], [25], stereo
matching [26] and object tracking [27].
Siamese networks were rst used in a few-shot classi cation The Siamese network rst used for one-shot image recogni-
task by [9]. Here, Siamese networks compute the similarition [9], shown in Fig. 1(a), consists of two branches that are
between the embeddings of image pairs to determine the clags clones of the same Convolutional Neural Network (CNN).

IIl. METHODS
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Fig. 2. Example of Siamese network branches used. (a) Branch similar to the one used in the original paper [9]. Used forSetvtr&st S-concatand
S-concat-reviewb) Our own multi-resolution branch architecture, used in $hmultiresnetwork.

(@) Subtract: pairs of images from the same class and pairs of images
Embeddingright | _ | 1 sigmoid from different classes, to not bias the network. Once deployed,

- output Siamese networks can perform similarity analysis. However,
Embedding left to classify novel images, these images need to be compared

to labelled prototypes. To start off, a single image can be

(b) Concatenate: o labelled as belonging to class 0. To check if other query images
Embedding right | —p 123’“&"’ belong to this class that we labelled 0, we compare them

Embe di‘ing left P with the saved prototype. This is called 1-way classi cation,

because we compare against a single labelled class. If we
have saved prototypes belongingNdifferent classes, thi-
way classi cation is carried out by computing the similarity

(c)

Concatenate: for pairs constructed with the new query image and each of
Embedfz‘"g right 1sigmoid|  the N prototypes. The class decision then corresponds to the
Embedding left output highest similarity score. IK labelled prototypes are stored

for each classK-shot classi cation is performed. Increasing
the number of stored prototypes increases the classi cation
Fig. 3. Similarity modules (trunks) for different network architectures.Sa) accuracy.

subtract output embeddings of the two branches are subtracte®-filmncat In this study we chose to perform 5-way 1-shot classi ca-
output embeddings of the two branches are concatenate®:-ifm)ltiresand

S-concat-reviewconcatenated embeddings, plus one convolutional and oHQnS for ease of comparison with the existing literature.
dense layer before output

A. Modi cations to baseline

The baseline architecture call&lsubtractnetwork in this
This means that the two branches receiving pairs of imagesveak is similar to the Siamese network rst used for one-
input could be seen as a single branch receiving two imagg®t image recognition [9], where the embeddings from the
sequentially. Weight sharing ensures that the order in whitlio branches are rst subtracted and then passed through a
the images are fed to the network is not important. It alsigmoid. The branch con guration of S-subtract is shown in
encourages similar images to be encoded in a similar wkig. 2(a), while the similarity module, also referred totasik
in feature space. The outputs of the two brancl@&g(X 1) in our paper, is described in Fig. 3(a). To improve the accuracy
and Gy, (X 2), commonly referred to as embeddings, are thesf the baseline Siamese network, we introduce the following
merged through a subtraction operation, followed by a sigmaidodi cations:
unit, which outputs the value 1 when the two input images Training on joint tasks
belong to the same class, or 0 otherwise. The networks &khile traditional CNNs used for classi cation (identi cation)
trained by feeding them image pairs from as many classesegrate the information specic to each of the different
as possible. It is important to have a balanced number adésses in the dataset and deduce relationships between the



different classes, veri cation algorithms such as the SiameBe Datasets

networks only look at similarities between two images at a\we ysed four datasets to evaluate the architectures, sum-
time. Both approaches have drawbacks: identi cation needsyrised in Table Il -
retraining for all classes to modify the mapping between alimnigiot [12] is a hand-written dataset containing 1623
existing classes; veri cation algorithms are more generalizabl®sracters from 50 different alphabets. There are only 20
but lack some of the discriminative power of identi Catio”samples per character. This was the rst and is the most well-
models. By combining both tasks during training, [42], [43known dataset used as a few-shot learning benchmark. The
showed that the performance across each of the tasks iFﬁage resolution is 105105 1.
proves. We therefore introduced two classi cation layers, OPBny-Imagenet [13] is a dataset extracted from the ILSVRC
for each input image, as shown in Fig. 1(b). Each laygompetition Imagenet dataset [45]. Tiny-Imagenet has 200
receives as input the branch embeddings corresponding to Bfsses, each with 500 training images, 50 validation images
of the input images. During inference, the classi cation layef,q 50 test images. The image resolution is 64 3.
is discarded and only the similarity output is used to COmMpPUEgFAR100 [14] consists of 60k natural images of size
the accuracy. 32 32 3, divided in 100 classes. There are 500 training

Concatenation of branch outputs images and 100 test images per class.
By concatenating the embeddings of the two branches, Reshambo[15] has 20 hand symbol classes recorded from
allowed the network to nd the best means of comparing then event-based DAVIS240C retina camera [46]. There are
two input images, instead of restricting it to a subtractiob000 training images and 1000 test images per class. For
operation. This architecture, nam&iconcat combines the compatibility with traditional convolutional neural networks
Siamese branch in Fig. 2(a) and the similarity module imsed for vision tasks, we transform the event streams produced
Fig. 3(b). S-concat is similar to S-subtract, the only diffeley the DAVIS240C into frames by accumulating events into
ence being the use of concatenation instead of subtractior6® 64 2D pixel histograms of a constant number of events,
combine the two embeddings. referred to aconstant-evenframes [47], [48].

Convolutional similarity module All datasets were minimally preprocessed. Pixel values

In the S-subtractand S-concatarchitectures, the output of the@cross all datasets were cast to a (0, 1) range for both
two branches is passed directly to a dense layer. With tffgining and testing. At training time, images were additionally

modi cation we explored how combining the two embeddinggdugmented using random rotations, translations, crops, zoom
in a more Comp|ex way impacts accuracy_Smoncat_revieW and shear. For all eXperimentS, training took place over 200
the two embeddings are concatenated and then passed thr@Rffehs using a batch size of 32 and an SGD optimizer with
a convolutional layer with 513 3 kernels followed by a momentum. The starting learning rate was 0.001, geometri-
dense layer and the sigmoid output. This architecture combirf@dly decreasing at each epoch by a scaling factor of 0.99. The

the Siamese branch in Fig. 2(a) and the similarity module {gst accuracy results were obtained using the standard 5-way
Fig. 3(c). 1-shot comparison for evaluating Siamese networks [9]. For

each dataset, 5 classes were set aside for testing, while the rest
ere used during training. In the case of the Omniglot, Tiny-
‘t:pagenet, CIFAR100 and Roshambo datasets, we have 1618,

more easily captured by smaller kernels, while larger objec]tg‘r” 95 and 15 fraining classes respectively. To compute test

could benet from larger receptive eld sizes. We therefor(gccqr‘jicy’ 1000 mfer;an dC(E) tg/::ls W?rr]e (_:onductte%. Folr ea_chdtna::,l
tested an architectur&-multires that combines different sizes pairings were created between he image 1o be classi ed an

of kernels in the same layer, similar to the Inception arch"€ prototype for each of the 5 classes to classify against. The

tecture [44]. Each input image is convolved with kernels grairngs are random, so the prototypes differ at each trial.
size 9, 7, 5 and 3 at each layer. The branch has 8 multi- IV. EDGE EMBEDDED PLATFORMS

resolution Iay_ers. The embeddings are poncaten_ated_and passed; ihe hardware study, we modi ed S-multires by remov-
through additional layers before reaching the sigmoid outpyty patch normalization and the 9x9 kernels. These changes
as explained for thes-concat-revievarchitecture. Fig. 2(b) \ere necessary to optimally run our architecture on all the plat-
shows the branch, while the trunk can be seen in Fig. 3(C)torms tested. We benchmarked this architect@enultires-
edge on 3 different platforms targetting inference and edge

Multiple resolution kernels
Natural image datasets like CIFAR100 and Tiny-Imagenet co
tain objects of different resolutions. Smaller objects could

TABLE Il applications: _ .
DETAILS OF THE DATASETS EMPLOYED 1) Carbon CNN acceleratorCarbon is a customized ver-
: : sion of our Nullhop CNN accelerator [39] with support for
Omniglot _ Tiny-Imagenet  CIFAR100 _Roshambo convolution layers (1D and 2D), pooling (max and average),
. No. C'as‘jesl 1;’(2)3 232 ;gs 2(2)20 ReLU and fully-connected layers. Carbon is optimized for
0. Tmages ' =% operating with a batch size of 1. Because our accelerator does
Image size 105 105 1 64 64 3 32 32 3 64 64 1

not support concatenation, this operation is executed by the
system microcontroller rather than on the accelerator itself.



Similar to the Coral Edge TPU, Carbon requires a quantizétteger quantized networks and a wide range of operations
network with xed point 16-bit activations and 8-bit weights.(detailed list available at [17]) including convolution, pooling,
For the evaluation of the Siamese networks, we us&ELU and the concatenation operation needed for running the
an implementation that supports 16-bit activations and 8-I8tmultires-edge. The network deployed on this device was
weights, together with a full-precision 32-bit resolution fotrained in oating-point 32 precision on a desktop NVIDIA
partial results accumulation. Biases are stored as 8-bit valuég.X 1080 TI before being quantized to 8-bit precision post-
The accelerator has 128 multiply-accumulate units and #mining. The resulting quantized model was converted to an
operating frequency of 500 MHz. Similar to Nullhop [39], thisdge TPU compatible version with the help of the Edge TPU
accelerator exploits sparsity of the feature maps by skippiegmpiler.
over the multiplication operations for pixels with a zero
activation. We extended the zero-skipping capabilities of the V. RESULTS

hardware with support for pruned neural networks. We present here results from the algorithmic experiments in

Performance Because of the irregular and unpredlctabl$ection V-A, the hardware benchmarking in Section V-B, con-

sparsity pattern of the activations, it is not possible_to preCise§Yderations of weight sparsity in Section V-C, and comparisons
evaluate the peak p_erf(_)rmance_ of Carbon, which s_trpn tween a classi cation network and the Siamese network in
depends on the speci ¢ input being processed. The minimug], ..o\ p

expected throughput is approximately 0.128 Tera Operations
per sec (TOP/s) when processing networks with no sparsi&/.
Assuming 75% activation sparsity and 50% weight sparsity,
the throughput is expected to increase to up to 0.8 ToP/sTable Il shows the main network architectures and their
according to the sparsity pattern. We experimentally veri edccuracies for different datasets, reported as meatandard
that the upper throughput limit reaches 5.8 TOP/s when tHgviation over ten independent runs. Fig. 4 condenses the same
sparsity values of both activations and weights are at 909§ormation in easy to interpret barplots.
on a test layer with 256 33 256 kernels. The estimates Across all datasets, adding a classi cation task during train-
of the computation speed are obtained from an RTL digitdlg increases accuracy by up to 17.7%. Adding a classi cation
simulator (Cadence Incisive v18.09.005). We used a statisk has a higher impact on networks that do not incorporate
power analysis technique [39] to obtain the power gures fghe multi-resolution architecture. In particular, for the baseline
both the core accelerator and DDR memory. architecture,S-subtract we observe an average increase in
Quantization and pruning The version of S-multires-edgeaccuracy of 7.7% across all datasets. In contrasG{owltires
deployed on Carbon has been obtained using TensorFltw average improvement is 1.8%. Multi-task learning and
Keras v2.1.0 with in-training quantization. We exploited thewlti-resolution kernels have a similar effect on accuracy and
built-in API for quantization and pruning [49], extending theve do not observe an additive effect of the two.
basic functionality (designed for Coral Edge TPU) to support Using a concatenation for the embeddings instead of a sub-
Carbon 16-bit activation/8-bit weight precision. traction seems to help especially in the case when a classi ca-
To increase the training speed, we implemented prunitign task is used during training. The accuracy increases in this
with the same quantization API rather than using the dedicatealse are 1%, 1.4%, 2.2% and 0% for Omniglot, Tiny-Imagenet,
one [50]. We applied an unstructured pruning based on weidbl=FAR100 and Roshambo respectively. Furthermore, when
absolute value [51]. For the training schedule, we started wipassing the embeddings through a convolutional and a dense
0% weight sparsity, increased it linearly every 100 batché&yer (such as inS-concat-reviely the accuracy increases
until we reached a nal sparsity after 20 epochs. After everfyurther compared to the case where the two embeddings
100 batches, we updated the pruning mask according to #ire only concatenated before being passed to the oufisut (
magnitude of the weights. In the experiments reported hemmnca). The average accuracy increase across all datasets
we used 5 different sparsity values: 10%, 25%, 50%, 75% aisd 2.2%. Adding the multi-resolution kernels in the "with
90%. classi cation scenario” adds another 2.9 % to the average
2) NVIDIA Jetson Nano:A 5W device based on a 128-across-dataset accuracy. Overall, in this scenario, shown in
core NVIDIA Maxwell GPU, with claimed peak 472 GFLOPsFig. 4(b), each modi cation to the baseline we implemented
throughput. It supports the CUDA programming interface arttelped improve the accuracy.
can compute all the operations/layers of a neural networkFor the case where no classication was used during
with oating-point precision. The networks run on this devicdraining, shown in Fig. 4(a), the impact of the different
were implemented in Tensor ow 2.0 and were trained on proposed modi cations is less evident. Howev&multires
desktop NVIDIA GTX 1080 Tl in oating-point 32 before clearly improves accuracy across all datasets. Compar8&d to
being deployed on the Jetson Nano. subtract S-multiresadds 1.3%, 21.4%, 17.3% and 8.4%. As
3) Coral Edge TPU:A single-board machine-learning in-expected, adding multiple resolution kernels helps primarily
ference accelerator that claims 4 TOP/s peak throughputnatural image classi cation, where objects might be present at
2W. However, our independent tests reported a real-wordifferent resolutions throughout the same class, as is the case
power consumption of more than 5W. It only supports 8-bfor Tiny-Imagenet and CIFAR100.

Algorithmic improvements



TABLE Il

TEST ACCURACY ON5 NOVEL CLASSES FOR DIFFERENT NETWORK ARCHITECTURES AND DIFFERIT DATASETS.

Omniglot

Tiny-Imagenet CIFAR100 Roshambo

Training without classi cation

S-subtract 97.2 2.4%
S-concat 97.2 1.9%
S-concat-review| 95.4 4.5%
S-multires 98.5 1.8%

33.0 2.9% 35.4 46% 50.5 7.1%
35.8 4.8% 35.043% 41.16.7%
33.1 5.6% 35.458% 50.8 6.1%
54.4 4.1% 52.7 8.0% 58.9 8.1%

Training including classi cation

S-subtract 94.8 5.0%
S-concat 95.8 4.8%
S-concat-review| 97.8 3.7%
S-multires 99.1 1.3%

50.7 6.6% 49.7 6.8% 51.8 6.6%
52.1 6.5% 519 7.2% 51.8 4.9%
54.4 7.0% 525 7.4% 55.6 5.4%
55.6 4.5% 54.4 6.8% 62.6 7.0%

Across all conditions, the accuracy improvement on Ong1oo . . . . .
niglot is not as dramatic due to a saturation effect. Tr§
accuracy achieved with S-subtract was already above 90%3s 89 .

a) 100 [ S-subtract

@ S-concat
80| I S-concat-review
I S-multires
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Fig. 5. 5-way 1-shot classi cation accuracy on Omniglot for an increasing
number of training classes.

con rmed this trend on Omniglot, which consists of 1618
classes for training. Fig. 5 shows that even on this simple
dataset, we need at least 250 training classes to reach the
maximum accuracy. For Roshambo, only 15 distinct classes
were used during training, while for Tiny-Imagenet we had
195 classes.

B. Hardware performance metrics

We compare the performance of the S-multires-edge net-
work on 4 different devices which use different bit precision
values for activations and weights. The desktop GPU (1080 Ti)
and the Jetson Nano support oating-point bit precision but the
other 2 platforms support lower bit precision for weights and
activations for reduced energy consumption. Table IV shows
the performance metrics of running this network including
bit precision, inference time, and test accuracy on 5 novel
classes. The evaluation was done on the Tiny-Imagenet dataset.

Fig. 4. Test accuracy on 5 novel classes for different network architectu_the S-multires-edge network for this dataset has 4.75 million

and different datasets. (a) No additional classi cation task was used durlngcl
training. (b) An additional classi cation task was used during training p

rameters, about 25.8% lower than the 5.5 million parameters
of the S-multires network. Its accuracy of 49.6% for 32-bit

The different levels of accuracy improvement across grecision is about 5.33% lower than the S-multires but the
datasets are partially due to the fact that two of the datasetsaller network can be benchmarked on all 4 devices. S-
consist of natural images and that different numbers of classesltires-edge achieves 49.3% when quantized to 8-bit weight
are available for training in each dataset. Siamese netwopkgcision and 16-bit activation precision. When quantized to
generalize better when the dataset has more classes. 8Afdt for weights and activations, the accuracy stands at 49.8%.



TABLE IV
PERFORMANCE OFS-MULTIRES-EDGE NETWORK ON DIFFERENT DEVICES

GTX 1080 Ti Jetson Nano Edge TPU Carbon
Weight precision 32-bit 32-bit 8-bit 8-bit
Activation precision 32-bit 32-bit 8-bit 16-bit
Accuracy 49.6% 49.6% 49.8% 49.3%
Inference time [ms] 15.8 0.6 329.4 40.0 19804 352 0.1"
Frames per second [FPS] 63.3 3.0 50.6 28.4
Average throughput [GOP/s] 577 28 462 259
Peak utilization 5.1% 5.9% 11.5% 4.5%

*  Numbers represent the mean and standard deviation over 1000 5-way classi cations. All measure-
ments are performed on the Tiny-Imagenet dataset.

**  Due to the time length of Carbon simulations, we limited the trials to 100 frames.

TABLE V
TEST RESULTS ON5 NOVEL CLASSES FOR DIFFERENT WEIGHT SPARSITY LEVELS O8-MULTIRES-EDGE ONCARBON ON THE TINY-IMAGENET DATASET.

Target weight sparsity 0% 10% 25% 50% 75% 90%
Accuracy 493% 88% 475% 7:5% 480% 9:7% 444% T:7% 404% 6:1% 360% 55%
Inference time [ms] 352 01 339 0:2 266 0:2 198 01 136 0:2 169 01
Average throughput [GOP/s] 259 266 339 461 661 837

Both accuracy values are within the4.52% accuracy stan- help to improve the accuracy [51]. The reported sparsity refers

dard deviation for S-multires and the Tiny-Imagenet datastet the target provided to the algorithm at the beginning of

(Table I1Il), conrming that it is possible to quantize thesdhe training. The effective value can differ from it, especially

models without sacri cing accuracy. for quantized networks. In our tests, the effective sparsity is
S-multires-edge performs 1.5 Giga Operations (GOp) forcanstantly 5% to 15% higher than the target, e.g. our target

pair of images. The deep-learning-dedicated hardware enalsgarsity of 25% results in our tests in an effective sparsity of

both the Edge TPU (19.75ms or 50.6 FPS) and Carbabout 40%.

(35.21ms or 28.4 FPS) to achieve an inference time com-

parable to a much more powerful and power hungry NVIDI®. One-branch vs Siamese classi cation

GTX 1080 Tl workstation GPU (15.80ms or 63.3 FPS). BY yjike Siamese networks, traditional one-branch classi ca-

contrast, the Jetson Nano is not suitable for real-time mferer“:&n models that do not compute similarity cannot classify

at3 FPS. new objects without retraining. This results in high latencies
whenever new objects must be learned. In this section we
compared the inference time of the S-multires architecture to
Training a network for weight sparsity is useful becausa similar one-branch classi cation model taking into account
the required memory footprint of the network will be lowerthe time it takes to do the retraining for the one-branch
In this subsection, we report on results for the inference timekssi er. We designed a standard classi cation network using
on Carbon which supports zero-skipping, and the accuracyafe branch of the S-multires network along with the trunk. As
S-multires-edge trained for 5 sparsity levels as described in tiere is only one input to the network, the concatenation layer
previous section. The other edge devices benchmarked hess removed. The number of output units is increased from
do not support zero-skipping. Table V shows that increasidgto 5 and the sigmoid activation is replaced by a softmax.
the weight sparsity in S-multires-edge leads to a signi carithis architecture can be seen in Fig. 6. Except for the output
improvement of the inference time, with a variation in accuayer, this architecture has the same number of parameters as
racy of about 1% for a target sparsity of 25% and a drdpe S-multires Siamese network.
of 4.9% for 50% sparsity. However, higher levels of sparsity On Tiny-Imagenet, the one-branch model takes 5.04 ms to
strongly impact the classi cation capabilities of the networkclassify an image, while the Siamese network requires 15.8 ms
while still being better than the 20% chance level, in thfor the same task. However, in the case of Siamese networks,
extreme case of 90% target weight sparsity, the accuracy drgasts of the network graph can be pre-computed. Because
to 36.60%. Better training methods for weight sparsity wilBiamese networks perform comparisons with immutable class

C. Effect of weight sparsity
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Fig. 6. One-branch conventional classi er, based on the S-multires architecture

TABLE VI
ONE-BRANCH VERSUSSIAMESE CLASSIFIER INFERENCE TIMES

Omniglot Tiny-Imagenet  CIFAR100 Roshambo
Input size 105 105 1 64 64 3 32 32 3 64 64 1

One-branch network | 6.0 0.3ms 5.0 0.4ms 4.3 0.7ms 5.0 0.3ms
inference time

Siamese  (S-multires)| 25.3 1.4ms 15.8 0.6 ms 7.809ms 16.31.9ms
inference time

Inference time in ms for a normal one-branch classi cation CNN (1 branch, 5 outpsitS§jamese network (2
branches, 1 output, 5-way classi cation).

All measurements performed on an NVIDIA GTX 1080Ti GPU using the S-multires architecture

prototypes, the branch embeddings for each of the prototypeisere classi cation and similarity tasks are combined at train-
can be stored instead of computed at each run. This meargtime, but not at inference time. In this paper we describe
that whenever we have an image from a new class that #e additional exploration that combines the original branch
network has not seen before, all we have to compute is taechitecture seen on Fig. 2(a) with the convolutional similarity
embedding for a prototype representing that class and tmedule seen on Fig. 3(c). We achieve overall improvements of
embedding for the query image. In addition, we need th9%, 22.6%, 19.0% and 12.1% respectively compared to the
perform the comparisons between the test image and all theselineS-subtracSiamese network when tested on Omniglot,
stored prototypes. In total, we need to run the branch twidény-Imagenet, Cifar100 and Roshambo. Our multi-resolution
and the comparisons as many times as there are classeSi&mese architecture contributes the most to the increase in
compare against. For example, when we want to classifyaacuracy, by almost 10%.

5th novel class, the inference time would be 2.54ms (the  The state-of-art accuracy on Omniglot is 99.5% and is
time it takes to run a branch) + 51.18 ms (one comparison achieved with meta-learning [52]. Although our best result on
for each of the 5 classes). The total latency would be 11 n@mniglot is slightly below state-of-art, we achieve this result
Although this inference time for a 5-class classi cation withysing a much simpler and more exible algorithm. Similarly,

a Siamese network is two times longer than that of the ongate-of-the-art results have been achieved with meta-learning
branch classi er, Siamese networks have the advantage t{&8] on different subsets of the ImageNet and CIFAR100
they do not need retraining. To retrain on the 5 novel classeénchmarks. Because of the different dataset subset selections,
would require 60's for each epoch (with about 1000 samplegr results are not directly comparable with these works.

per novel class), or around 1.5 hours for a full training on & oyr accuracy results are lower than what some incremental
desktop GPU, which is roughly 491.000 times more expensi{&ning methods achieve [10], [54], but could be improved
in terms of time than running a Siamese network. by performing a K-shot instead of the 1-shot classi cation we
are currently testing. However, this increase in accuracy will

come at the cost of higher memory requirements and additional
A. Siamese Network Model computation.

VI. DISCUSSION AND CONCLUSION

In an attempt to reduce the accuracy gap for novel classe®©ur algorithm improves upon the inference times of the
between one-shot and incremental learning algorithms, in [libfremental learning algorithms mentioned above while main-
we proposed novel architectural modi cations to the origindghining a much higher than chance accuracy. It also has the
Siamese networks and adopted a hybrid training mechanianvantage of not using backpropagation. For example, in [55]



we showed how iCaRL [10] can be successfully used fmssible research threads on hardware. Similarly, the software
learn event-based hand symbols incrementally. However, ti@ndling the mapping of the models to the hardware have a
algorithm required two minutes of training time for every twalear margin of improvement and can be the focus of future

novel classes, even with a powerful NVIDIA GTX 1080 Timajor work.

GPU. The Siamese networks used in this study can classifyBecause Siamese Networks do not require retraining unlike
novel samples from the same event-based Roshambo datatfetr incremental learning techniques in few-shot learning,

in only 15 ms on an edge device. they are ideal for edge platforms which do not include on-

chip training resources. The benchmarking results show that
we can run our Siamese classier at 60 FPS on the Edge

To evaluate if our proposed architectural model modi TPU, making it suitable for real-time applications. Further
cations are compatible with modern edge neural netwogkgorithmic research will be carried out to determine alternate
accelerators, we tested the improved Siamese network on thiesss for training Siamese networks so that their classi cation
different platforms (Coral Edge TPU, NVIDIA Jetson Nanaccuracies during inference approach the state-of-art results
and our custom Carbon accelerator), using a workstation GFidm pure classi cation networks.

(NVIDIA GTX 1080 TI) as reference.

Quantization is a widely adopted technique to reduce the
computational load of neural networks. We show how if1] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
can be safely used for Siamese nemworks, achiewng @ Sl LSS e USE0 0 5 00 S 0
accuracy reduction in the case of Carbon quantization (-0.4%)  tionist networks: The sequential learning problem,” Rsychology of
and a slight increase (+0.2%) for the Edge TPU (Table IV). Learning and MotivationG. H. Bower, Ed. Academic Press, 1989,
Moreover, the networks that we run on the Edge TPU werg, \\;\(/).I-'Y.Z%hpé)ﬁ,l\(().?c.lisid, Z. Kira, Y.-C. F. Wang, and J.-B. Huang, “A
quantized post-training. This was required due to an iNnCom-" cjoser look at few-shot classi cation[CLR, no. 2018, pp. 1-16, 2019.
patibility between the version of Tensor ow we used and in-  [Online]. Available: http://arxiv.org/abs/1904.04232

trainin uantization process needed for the Edge TPU. |i4] E. Bart and S. Ullman, “Cross-generalization: learning novel classes
94 P Y from a single example by feature replacement,”2005 IEEE Com-

training q_uantization is known to be superior to post-training  yter Society Conference on Computer Vision and Pattern Recognition
guantization [56], [57]. Therefore, the accuracy of the network (CVPR'05) vol. 1, 2005, pp. 672-679 vol. 1.

i i i [5] Y. Wang, R. Girshick, M. Hebert, and B. Hariharan, “Low-shot learning
on the quantlzed Edge TPU pIatform mlght be even hlgher' from imaginary data,” in2018 IEEE/CVF Conference on Computer

Weight pruning is another popular technique to accelerate \jsion and Pattern Recognitio018, pp. 7278-7286.
neural network inference by increasing sparsity. To assess 8 A. Antoniou, A. Storkey, and H. Edwards, "Augmenting image clas-

vaIidity in the context of Siamese networks. we trained our siers using data augmentation generative adversarial networks.” in
; International Conference on Arti cial Neural Networkgp. 594-603.

S-multires-edge model with multiple levels of weight sparsity  gpringer, Cham, 2018.
and tested it on our Carbon platform. Our results (Table V)7] J. Vanschoren, "Meta-learning.” ilutomated Machine Learningp.
show how pruning can be used to obtain performance that is o 35-61. Springer, Cham, 2019.

. . . . . J. Bromley, J. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
par with that of a workstation: running a 5-way classi cation™ "~ g Sackinger, and R. Shah, “Signature veri cation using a “siamese”

with an effective sparsity of 85.98% takes 13.60 ms whereas time delay neural network,” iint. J. Patt. Recognit. Artif. Intell.1993.

the same classi cation for an effective sparsity of 94 670/({9] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
) one-shot image recognition,” iRroceedings of the 32nd International

ta_kes 10-88_ ms. While quantizing the n_etwork re_duc_ed latency  conference on Machine Learning, Lille, Franoel. 2, 2015.
without a signi cant accuracy drop, weight pruning impacte¢io] S.-A. Rebuf, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL:
the accuracy severely. Incremental classi er and representation learning,|EHEE Conference

. . . . . on Computer Vision and Pattern Recognition (CVPR)ly 2017.
An important question we aimed to answer with this Worhl] I. A. Lungu, Y. Hu, and S. Liu, “Multi-resolution siamese networks

was how ef ciently edge devices can handle complex network for one-shot learning,” ir2020 2nd IEEE International Conference on
topologies such as the proposed Siamese network architecttirﬁ. Arti cial Intelligence Circuits and Systems (AICAZ020, pp. 183-187.

bl h K utilizati hich is th . B. M. Lake, R. Salakhutdinov, and J. Tenenbaum, “Human-level concept
In Table IV, we report the peak utilization, which is the rati learning through probabilistic program inductiotiencevol. 350, pp.

between the maximum throughput of each platform and the 1332 - 1338, 2015. N _ _
effective measured performance. Overall, all the tested p@l@] “Tiny ImageNet Visual Recognition Challenge.” [Online]. Available:

. e https://tiny-imagenet.herokuapp.com/
forms underperform, ranging from 4.47% resource Ut'“Zat'O[FM] A. Krizhevsky, “Learning multiple layers of features from tiny images,”

(Carbon) to 11.54% (Edge TPU). All the three edge platforms  University of Toronto, Tech. Rep., 2012.

are designed to exploit the high level of parallelism anid®! |- A. Lungu, S.-C. Liu, and T. Delbruck, “Fast event-driven incremental
learning of hand symbols,” i2019 IEEE International Conference on

regularity of CNNs. The complexity of the S-multires-edge  arii cial Intelligence Circuits and Systems (AICAS)019, pp. 25-28.
model with its multiple kernel resolutions, few kernels penes] NVIDIA, “Jetson nano.” [Online]. Available: https://developer.nvidia.
layer and many concatenation operations seems to undermine com/embedded/jetson-nano-developer-kit

. 17] Coral, “T del the edge tpu.” [Online]. Available:
the ability of the edge platforms to make full use of the ht?;‘::/,co;T;?,zgvgs/rgfg;;u,%‘odeg_iﬁtrgj pu" [Online]. Available

available resources. In the last decade, convolutional laygr® O. vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wierstra,
have been the research focus for CNNs accelerators. As the “Matching networks for one shot learning,” iAdvances in Neural

. . . Information Processing Systems,2d. D. Lee, M. Sugiyama, U. V.
compute time of convolutions decreases, the relative cost of Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016,
other operations such as concatenation increases, opening newpp. 3630-3638.

B. Hardware evaluation
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