
�;�V�S�J�D�I �0�Q�F�O �3�F�Q�P�T�J�U�P�S�Z �B�O�E
�"�S�D�I�J�W�F
�6�O�J�W�F�S�T�J�U�Z �P�G �;�V�S�J�D�I
�6�O�J�W�F�S�T�J�U�Z �-�J�C�S�B�S�Z
�4�U�S�J�D�L�I�P�G�T�U�S�B�T�T�F ����
�$�)���������� �;�V�S�J�D�I
�X�X�X���[�P�S�B���V�[�I���D�I

�:�F�B�S�� ��������

�4�J�B�N�F�T�F �/�F�U�X�P�S�L�T �G�P�S �'�F�X���4�I�P�U �-�F�B�S�O�J�O�H �P�O �&�E�H�F �&�N�C�F�E�E�F�E �%�F�W�J�D�F�T

�-�V�O�H�V�
 �*�V�M�J�B �"�M�F�Y�B�O�E�S�B �� �"�J�N�B�S�
 �"�M�F�T�T�B�O�E�S�P �� �)�V�
 �:�V�I�V�B�O�H �� �%�F�M�C�S�V�D�L�
 �5�P�C�J �� �-�J�V�
 �4�I�J�I���$�I�J�J

�%�0�*�� �I	R�Q�T�������E�P�J���P�S�H�������������������K�F�U�D�B�T��������������������������

�1�P�T�U�F�E �B�U �U�I�F �;�V�S�J�D�I �0�Q�F�O �3�F�Q�P�T�J�U�P�S�Z �B�O�E �"�S�D�I�J�W�F�
 �6�O�J�W�F�S�T�J�U�Z �P�G �;�V�S�J�D�I
�;�0�3�" �6�3�-�� �I	R�Q�T�������E�P�J���P�S�H�������������������V�[�I��������������
�+�P�V�S�O�B�M �"�S�U�J�D�M�F
�"�D�D�F�Q�U�F�E �7�F�S�T�J�P�O

�0�S�J�H�J�O�B�M�M�Z �Q�V�C�M�J�T�I�F�E �B�U��
�-�V�O�H�V�
 �*�V�M�J�B �"�M�F�Y�B�O�E�S�B�� �"�J�N�B�S�
 �"�M�F�T�T�B�O�E�S�P�� �)�V�
 �:�V�I�V�B�O�H�� �%�F�M�C�S�V�D�L�
 �5�P�C�J�� �-�J�V�
 �4�I�J�I���$�I�J�J �	���������
�� �4�J�B�N�F�T�F �/�F�U��
�X�P�S�L�T �G�P�S �'�F�X���4�I�P�U �-�F�B�S�O�J�O�H �P�O �&�E�H�F �&�N�C�F�E�E�F�E �%�F�W�J�D�F�T�� �*�&�&�& �+�P�V�S�O�B�M �P�O �&�N�F�S�H�J�O�H �B�O�E �4�F�M�F�D�U�F�E �5�P�Q�J�D�T �J�O
�$�J�S�D�V�J�U�T �B�O�E �4�Z�T�U�F�N�T�
 �����	���
������������������
�%�0�*�� �I	R�Q�T�������E�P�J���P�S�H�������������������K�F�U�D�B�T��������������������������

Siamese Networks for Few-shot Learning on Edge
Embedded Devices

Iulia-Alexandra Lungu, Alessandro Aimar, Yuhuang Hu, Tobi Delbruck, Shih-Chii Liu
Institute of Neuroinformatics, University of Zürich and ETH Z̈urich

Zürich, Switzerland
f iulialexandra, alessandro.aimar, yuhuang.hu, tobi, shih g@ini.uzh.ch

Abstract—Edge arti�cial intelligence hardware targets mainly
inference networks that have been pretrained on massive datasets.
The �eld of few-shot learning looks for methods that allow a
network to produce high accuracy even when only a few samples
of each class are available. Siamese networks can be used to
tackle few-shot learning problems and are unique because they
do not require retraining on the new samples of the new classes.
Therefore they are suitable for edge hardware accelerators which
often do not include on-chip training capabilities.

This work describes improvements to a baseline Siamese
network and benchmarking of the improved network on edge
platforms. The modi�cations to the baseline network included
adding multi-resolution kernels, a hybrid training process as
well a different embedding similarity computation method. This
network shows an average accuracy improvement of up to 22%
across 4 datasets in a 5-way, 1-shot classi�cation task. Bench-
marking results using three edge computing platforms (NVIDIA
Jetson Nano, Coral Edge TPU and a custom convolutional neural
network accelerator) show that a Siamese classi�er can run on
these devices at reasonable frame rates for real-time performance,
between 3 frames per second (FPS) on Jetson Nano and 60 FPS
on the Edge TPU. By increasing the weight sparsity during
training, the inference time of a network with 25% weight
sparsity increases by 10 FPS but with only 1% drop in accuracy.

Index Terms—one-shot learning, few-shot learning, edge in-
telligence, deep networks, computer vision, Siamese networks,
hardware accelerators, edge computing

I. I NTRODUCTION

Edge arti�cial intelligence (AI) hardware accelerators usu-
ally target inference networks that have been trained of�ine
on large servers [1]. Retraining these networks once they are
deployed is both cost and energy prohibitive. When naively
retrained on new data, a deep neural network (DNN) can
learn new object classes but “forgets” most of the previous
knowledge it had accumulated, unless previous data is fed to
the network along with the new data [2].

Incorporating new classes without extensive amounts of
samples and without requiring retraining on the entire original
dataset is an active area of research in the �eld of few-shot
learning. In this �eld, the number of stored samples in most
algorithms is fewer than 20, usually either 1 or 5 [3]. This
obviates the need to accumulate a large number of samples
before training the system, which would be useful in edge

This work is partially funded by the Samsung Institute of Technology, the
SNSF National Centre of Competence in Research (NCCR) Robotics, and the
SNSF BRIDGE grant no. 40B2-0181010.

deployment when data is scarce and the memory needed to
store the samples is limited.

In recent years, multiple approaches to solving few-shot
learning problems have been proposed. Transfer learning [4]
trains a network in a fully-supervised manner and then �ne-
tunes the last layer on the novel classes or tasks. Data augmen-
tation methods [5], [6] augment a small labelled dataset and
turn the few-shot learning problem into a standard supervised
learning problem. Meta-learning [7] allows for rapid �ne-
tuning of the model parameters by training a general meta-
learner on a variety of tasks. The above-mentioned methods
are not suitable for traditional edge implementations on in-
ference accelerators because they require retraining whenever
new classes of objects become available.

Siamese networks [8], [9] are another type of algorithm used
for few-shot learning. Unlike standard classi�ers, Siamese
networks can classify samples from novel classes without
requiring any retraining for the new classes. Because no
retraining is needed, this architecture is suitable for edge
devices which typically do not include on-chip learning. These
networks are part of the metric learning approach to few-shot
learning problems and are trained to recognize the similarity
or dissimilarity between sample pairs. Training is �rst carried
out of�ine on a vast number of sample pairs that belong either
to the same class or to different classes. After the Siamese
network is deployed, data to be classi�ed are compared to
labelled representative examples for each class, calledproto-
typesin the rest of the paper. The incoming samples need not
belong to classes seen during training. The winning class is
the one corresponding to the highest similarity between the
sample of interest and the saved prototype.

A. Contributions

Although Siamese networks can classify novel objects with-
out retraining, the classi�cation accuracy of these networks on
unknown classes is worse than that of incremental learning
algorithms such as iCaRL [10]. In [11], we proposed sev-
eral modi�cations to baseline Siamese networks to address
the accuracy gap: different kernel size streams within one
layer, concatenating the branch embeddings, adding several
layers that combine the two embeddings before the similarity
output, as well as a hybrid training process which makes
use of both classi�cation and similarity. By combining the
four approaches, we showed state-of-the-art accuracy on one-

Accepted for publication in 2020 IEEE Journal on Emerging and

Selected Topics in Circuits and Systems

shot classi�cation with Siamese networks on four benchmark
datasets, Omniglot [12], Tiny-Imagenet [13], CIFAR100 [14],
and Roshambo [15].

This study provides the following contributions to the �eld
of few-shot learning:

1) We benchmark Siamese networks on three different edge
devices, speci�cally, the NVIDIA Jetson Nano [16], the
Coral Edge TPU [17] as well as a custom hardware
CNN accelerator to evaluate the real-time performance
of a few-shot learning algorithm on edge platforms. We
believe this is one of the �rst studies to show an edge
hardware implementation of this algorithm.

2) We propose several modi�cations to the baseline
Siamese networks: a hybrid training process which in-
cludes both classi�cation and similarity-based losses,
concatenation of branch embeddings, adding several
layers that combine the two embeddings before the
similarity output, as well as a branch architecture that
contains multi-resolution convolutional layers. These
modi�cations lead to an improvement in 5-class clas-
si�cation accuracy by up to 22.6%.

3) We show improved inference times from a baseline
Siamese network by performing training with reduced
bit precision and weight matrices with high sparsity
levels.

4) We compare the inference times for a Siamese network
against a one-branch classi�cation network and argue
why Siamese networks are a good approach to few-shot
classi�cation.

Section II discusses relevant work, Section III presents the
proposed improvements, the datasets and the edge devices used
in the study, while Section V describes the algorithmic and
benchmarking results.

TABLE I
COMPARISON BETWEEN DIFFERENT STATE-OF-ART ALGORITHMS AND

SIAMESE NETWORKS ONOMNIGLOT FOR 1-SHOT 5-WAY CLASSIFICATION

Accuracy Retraining required?

Matching networks [18] 98.1% No

Prototypical networks [19] 98.8% No

MAML (meta-learning) [20] 98.7% Yes

Siamese networks (ours) 99.0% No

II. RELEVANT WORK

Siamese networks (SNs) were introduced by [8] for solving
a signature veri�cation task. The idea of computing similarity
between two samples using a deep arti�cial neural network
(ANN) was then quickly adopted in applications such as
face veri�cation [21], few-shot classi�cation [9], person re-
identi�cation [22], [23], image retrieval [24], [25], stereo
matching [26] and object tracking [27].

Siamese networks were �rst used in a few-shot classi�cation
task by [9]. Here, Siamese networks compute the similarity
between the embeddings of image pairs to determine the class

Fig. 1. General Siamese network architecture. Grey components are only
used during training. (a) Networks are trained using only a similarity loss. (b)
Both similarity and classi�cation losses are employed at training.

identity of a query alphabet symbol. Other similarity-based
few-shot learning methods include Matching Networks [28],
Prototypical Networks [19], Relation Networks [29]. Another
branch of few-shot learning aims to �nd good initializations of
the employed models so that novel classes can be learned by
adapting the existing model using only a limited number of
samples [20], [30], [31]. The �eld of co-saliency detection
resembles Siamese networks in their endeavour to uncover
jointly informative areas in images. Some of the approaches
suggested in [32], [33] could be applied to the �eld of few-shot
learning to extend its ability to perform object identi�cation
without retraining.

The appeal of Siamese networks is that, unlike many of
the aforementioned few-shot learning algorithms, Siamese
networks are a simple, scalable algorithm that does not require
re-training when new classes become available. As they do
not require on-chip training resources, these networks should
be easily adaptable to inference-focused edge hardware ac-
celerators such as the Application-Speci�c Integrated Circuits
(ASICs) and Field-Programmable Gate Array (FPGA)-based
accelerators [34]–[39]. Commercial edge computing platforms
such as the NVIDIA Jetson series (e.g., Nano, TX2) have an
on-board, energy-ef�cient GPU to accelerate DNNs at runtime.
Siamese networks are well-suited for re-identifying a sample
that has been presented previously. Example tasks that are
useful for edge applications include the re-identi�cation of
a tracked object across multiple camera views [23] or of a
person's voice for speaker veri�cation [40]. A recent study
evaluated the inference and training time of ResNet-50 and
MobileNet-v2 on a re-identi�cation task using the NVIDIA
Xavier which burns more power than the edge platforms used
in this work [41].

III. M ETHODS

The Siamese network �rst used for one-shot image recogni-
tion [9], shown in Fig. 1(a), consists of two branches that are
two clones of the same Convolutional Neural Network (CNN).

Fig. 2. Example of Siamese network branches used. (a) Branch similar to the one used in the original paper [9]. Used for networksS-subtract, S-concatand
S-concat-review(b) Our own multi-resolution branch architecture, used in theS-multiresnetwork.

Fig. 3. Similarity modules (trunks) for different network architectures. (a)S-
subtract: output embeddings of the two branches are subtracted; (b)S-concat:
output embeddings of the two branches are concatenated; (c)S-multiresand
S-concat-review: concatenated embeddings, plus one convolutional and one
dense layer before output

This means that the two branches receiving pairs of images as
input could be seen as a single branch receiving two images
sequentially. Weight sharing ensures that the order in which
the images are fed to the network is not important. It also
encourages similar images to be encoded in a similar way
in feature space. The outputs of the two branches,Gw (X 1)
and Gw (X 2), commonly referred to as embeddings, are then
merged through a subtraction operation, followed by a sigmoid
unit, which outputs the value 1 when the two input images
belong to the same class, or 0 otherwise. The networks are
trained by feeding them image pairs from as many classes
as possible. It is important to have a balanced number of

pairs of images from the same class and pairs of images
from different classes, to not bias the network. Once deployed,
Siamese networks can perform similarity analysis. However,
to classify novel images, these images need to be compared
to labelled prototypes. To start off, a single image can be
labelled as belonging to class 0. To check if other query images
belong to this class that we labelled 0, we compare them
with the saved prototype. This is called 1-way classi�cation,
because we compare against a single labelled class. If we
have saved prototypes belonging toN different classes, theN-
way classi�cation is carried out by computing the similarity
for pairs constructed with the new query image and each of
the N prototypes. The class decision then corresponds to the
highest similarity score. IfK labelled prototypes are stored
for each class,K-shot classi�cation is performed. Increasing
the number of stored prototypes increases the classi�cation
accuracy.

In this study we chose to perform 5-way 1-shot classi�ca-
tions for ease of comparison with the existing literature.

A. Modi�cations to baseline

The baseline architecture calledS-subtractnetwork in this
work is similar to the Siamese network �rst used for one-
shot image recognition [9], where the embeddings from the
two branches are �rst subtracted and then passed through a
sigmoid. The branch con�guration of S-subtract is shown in
Fig. 2(a), while the similarity module, also referred to astrunk
in our paper, is described in Fig. 3(a). To improve the accuracy
of the baseline Siamese network, we introduce the following
modi�cations:

Training on joint tasks
While traditional CNNs used for classi�cation (identi�cation)
integrate the information speci�c to each of the different
classes in the dataset and deduce relationships between the

different classes, veri�cation algorithms such as the Siamese
networks only look at similarities between two images at a
time. Both approaches have drawbacks: identi�cation needs
retraining for all classes to modify the mapping between all
existing classes; veri�cation algorithms are more generalizable
but lack some of the discriminative power of identi�cation
models. By combining both tasks during training, [42], [43]
showed that the performance across each of the tasks im-
proves. We therefore introduced two classi�cation layers, one
for each input image, as shown in Fig. 1(b). Each layer
receives as input the branch embeddings corresponding to one
of the input images. During inference, the classi�cation layer
is discarded and only the similarity output is used to compute
the accuracy.

Concatenation of branch outputs
By concatenating the embeddings of the two branches, we
allowed the network to �nd the best means of comparing the
two input images, instead of restricting it to a subtraction
operation. This architecture, namedS-concat, combines the
Siamese branch in Fig. 2(a) and the similarity module in
Fig. 3(b). S-concat is similar to S-subtract, the only differ-
ence being the use of concatenation instead of subtraction to
combine the two embeddings.

Convolutional similarity module
In the S-subtractandS-concatarchitectures, the output of the
two branches is passed directly to a dense layer. With this
modi�cation we explored how combining the two embeddings
in a more complex way impacts accuracy. InS-concat-review,
the two embeddings are concatenated and then passed through
a convolutional layer with 5123 � 3 kernels followed by a
dense layer and the sigmoid output. This architecture combines
the Siamese branch in Fig. 2(a) and the similarity module in
Fig. 3(c).

Multiple resolution kernels
Natural image datasets like CIFAR100 and Tiny-Imagenet con-
tain objects of different resolutions. Smaller objects could be
more easily captured by smaller kernels, while larger objects
could bene�t from larger receptive �eld sizes. We therefore
tested an architecture,S-multires, that combines different sizes
of kernels in the same layer, similar to the Inception archi-
tecture [44]. Each input image is convolved with kernels of
size 9, 7, 5 and 3 at each layer. The branch has 8 multi-
resolution layers. The embeddings are concatenated and passed
through additional layers before reaching the sigmoid output,
as explained for theS-concat-reviewarchitecture. Fig. 2(b)
shows the branch, while the trunk can be seen in Fig. 3(c).

TABLE II
DETAILS OF THE DATASETS EMPLOYED

Omniglot Tiny-Imagenet CIFAR100 Roshambo

No. classes 1623 200 100 20

No. images / class 20 600 600 2000

Image size 105� 105� 1 64� 64� 3 32� 32� 3 64� 64� 1

B. Datasets

We used four datasets to evaluate the architectures, sum-
marised in Table II :
Omniglot [12] is a hand-written dataset containing 1623
characters from 50 different alphabets. There are only 20
samples per character. This was the �rst and is the most well-
known dataset used as a few-shot learning benchmark. The
image resolution is 105� 105� 1.
Tiny-Imagenet [13] is a dataset extracted from the ILSVRC
competition Imagenet dataset [45]. Tiny-Imagenet has 200
classes, each with 500 training images, 50 validation images
and 50 test images. The image resolution is 64� 64� 3.
CIFAR100 [14] consists of 60k natural images of size
32� 32� 3, divided in 100 classes. There are 500 training
images and 100 test images per class.
Roshambo [15] has 20 hand symbol classes recorded from
an event-based DAVIS240C retina camera [46]. There are
1000 training images and 1000 test images per class. For
compatibility with traditional convolutional neural networks
used for vision tasks, we transform the event streams produced
by the DAVIS240C into frames by accumulating events into
64� 64 2D pixel histograms of a constant number of events,
referred to asconstant-eventframes [47], [48].

All datasets were minimally preprocessed. Pixel values
across all datasets were cast to a (0, 1) range for both
training and testing. At training time, images were additionally
augmented using random rotations, translations, crops, zoom
and shear. For all experiments, training took place over 200
epochs using a batch size of 32 and an SGD optimizer with
momentum. The starting learning rate was 0.001, geometri-
cally decreasing at each epoch by a scaling factor of 0.99. The
test accuracy results were obtained using the standard 5-way
1-shot comparison for evaluating Siamese networks [9]. For
each dataset, 5 classes were set aside for testing, while the rest
were used during training. In the case of the Omniglot, Tiny-
Imagenet, CIFAR100 and Roshambo datasets, we have 1618,
195, 95 and 15 training classes respectively. To compute test
accuracy, 1000 inference trials were conducted. For each trial,
5 pairings were created between the image to be classi�ed and
one prototype for each of the 5 classes to classify against. The
pairings are random, so the prototypes differ at each trial.

IV. EDGE EMBEDDED PLATFORMS

For the hardware study, we modi�ed S-multires by remov-
ing batch normalization and the 9x9 kernels. These changes
were necessary to optimally run our architecture on all the plat-
forms tested. We benchmarked this architecture,S-multires-
edge, on 3 different platforms targetting inference and edge
applications:

1) Carbon CNN accelerator:Carbon is a customized ver-
sion of our Nullhop CNN accelerator [39] with support for
convolution layers (1D and 2D), pooling (max and average),
ReLU and fully-connected layers. Carbon is optimized for
operating with a batch size of 1. Because our accelerator does
not support concatenation, this operation is executed by the
system microcontroller rather than on the accelerator itself.

Similar to the Coral Edge TPU, Carbon requires a quantized
network with �xed point 16-bit activations and 8-bit weights.

For the evaluation of the Siamese networks, we used
an implementation that supports 16-bit activations and 8-bit
weights, together with a full-precision 32-bit resolution for
partial results accumulation. Biases are stored as 8-bit values.
The accelerator has 128 multiply-accumulate units and an
operating frequency of 500 MHz. Similar to Nullhop [39], this
accelerator exploits sparsity of the feature maps by skipping
over the multiplication operations for pixels with a zero
activation. We extended the zero-skipping capabilities of the
hardware with support for pruned neural networks.

Performance Because of the irregular and unpredictable
sparsity pattern of the activations, it is not possible to precisely
evaluate the peak performance of Carbon, which strongly
depends on the speci�c input being processed. The minimum
expected throughput is approximately 0.128 Tera Operations
per sec (TOP/s) when processing networks with no sparsity.
Assuming 75% activation sparsity and 50% weight sparsity,
the throughput is expected to increase to up to 0.8 TOP/s
according to the sparsity pattern. We experimentally veri�ed
that the upper throughput limit reaches 5.8 TOP/s when the
sparsity values of both activations and weights are at 90%
on a test layer with 256 3� 3� 256 kernels. The estimates
of the computation speed are obtained from an RTL digital
simulator (Cadence Incisive v18.09.005). We used a static
power analysis technique [39] to obtain the power �gures for
both the core accelerator and DDR memory.
Quantization and pruning The version of S-multires-edge
deployed on Carbon has been obtained using TensorFlow
Keras v2.1.0 with in-training quantization. We exploited the
built-in API for quantization and pruning [49], extending the
basic functionality (designed for Coral Edge TPU) to support
Carbon 16-bit activation/8-bit weight precision.

To increase the training speed, we implemented pruning
with the same quantization API rather than using the dedicated
one [50]. We applied an unstructured pruning based on weight
absolute value [51]. For the training schedule, we started with
0% weight sparsity, increased it linearly every 100 batches
until we reached a �nal sparsity after 20 epochs. After every
100 batches, we updated the pruning mask according to the
magnitude of the weights. In the experiments reported here,
we used 5 different sparsity values: 10%, 25%, 50%, 75% and
90%.

2) NVIDIA Jetson Nano:A 5 W device based on a 128-
core NVIDIA Maxwell GPU, with claimed peak 472 GFLOPs
throughput. It supports the CUDA programming interface and
can compute all the operations/layers of a neural network
with �oating-point precision. The networks run on this device
were implemented in Tensor�ow 2.0 and were trained on a
desktop NVIDIA GTX 1080 TI in �oating-point 32 before
being deployed on the Jetson Nano.

3) Coral Edge TPU:A single-board machine-learning in-
ference accelerator that claims 4 TOP/s peak throughput at
2 W. However, our independent tests reported a real-world
power consumption of more than 5 W. It only supports 8-bit

integer quantized networks and a wide range of operations
(detailed list available at [17]) including convolution, pooling,
ReLU and the concatenation operation needed for running the
S-multires-edge. The network deployed on this device was
trained in �oating-point 32 precision on a desktop NVIDIA
GTX 1080 TI before being quantized to 8-bit precision post-
training. The resulting quantized model was converted to an
Edge TPU compatible version with the help of the Edge TPU
compiler.

V. RESULTS

We present here results from the algorithmic experiments in
Section V-A, the hardware benchmarking in Section V-B, con-
siderations of weight sparsity in Section V-C, and comparisons
between a classi�cation network and the Siamese network in
Section V-D.

A. Algorithmic improvements

Table III shows the main network architectures and their
accuracies for different datasets, reported as mean� standard
deviation over ten independent runs. Fig. 4 condenses the same
information in easy to interpret barplots.

Across all datasets, adding a classi�cation task during train-
ing increases accuracy by up to 17.7%. Adding a classi�cation
task has a higher impact on networks that do not incorporate
the multi-resolution architecture. In particular, for the baseline
architecture,S-subtract, we observe an average increase in
accuracy of 7.7% across all datasets. In contrast, forS-multires,
the average improvement is 1.8%. Multi-task learning and
multi-resolution kernels have a similar effect on accuracy and
we do not observe an additive effect of the two.

Using a concatenation for the embeddings instead of a sub-
traction seems to help especially in the case when a classi�ca-
tion task is used during training. The accuracy increases in this
case are 1%, 1.4%, 2.2% and 0% for Omniglot, Tiny-Imagenet,
CIFAR100 and Roshambo respectively. Furthermore, when
passing the embeddings through a convolutional and a dense
layer (such as inS-concat-review), the accuracy increases
further compared to the case where the two embeddings
are only concatenated before being passed to the output (S-
concat). The average accuracy increase across all datasets
is 2.2%. Adding the multi-resolution kernels in the ”with
classi�cation scenario” adds another 2.9 % to the average
across-dataset accuracy. Overall, in this scenario, shown in
Fig. 4(b), each modi�cation to the baseline we implemented
helped improve the accuracy.

For the case where no classi�cation was used during
training, shown in Fig. 4(a), the impact of the different
proposed modi�cations is less evident. However,S-multires
clearly improves accuracy across all datasets. Compared toS-
subtract, S-multiresadds 1.3%, 21.4%, 17.3% and 8.4%. As
expected, adding multiple resolution kernels helps primarily
natural image classi�cation, where objects might be present at
different resolutions throughout the same class, as is the case
for Tiny-Imagenet and CIFAR100.

TABLE III
TEST ACCURACY ON5 NOVEL CLASSES FOR DIFFERENT NETWORK ARCHITECTURES AND DIFFERENT DATASETS.

Omniglot Tiny-Imagenet CIFAR100 Roshambo

Training without classi�cation

S-subtract 97.2� 2.4% 33.0� 2.9% 35.4� 4.6% 50.5� 7.1%

S-concat 97.2� 1.9% 35.8� 4.8% 35.0� 4.3% 41.1� 6.7%

S-concat-review 95.4� 4.5% 33.1� 5.6% 35.4� 5.8% 50.8� 6.1%

S-multires 98.5� 1.8% 54.4� 4.1% 52.7� 8.0% 58.9� 8.1%

Training including classi�cation

S-subtract 94.8� 5.0% 50.7� 6.6% 49.7� 6.8% 51.8� 6.6%

S-concat 95.8� 4.8% 52.1� 6.5% 51.9� 7.2% 51.8� 4.9%

S-concat-review 97.8� 3.7% 54.4� 7.0% 52.5� 7.4% 55.6� 5.4%

S-multires 99.1� 1.3% 55.6� 4.5% 54.4� 6.8% 62.6� 7.0%

Across all conditions, the accuracy improvement on Om-
niglot is not as dramatic due to a saturation effect. The
accuracy achieved with S-subtract was already above 90%.

Fig. 4. Test accuracy on 5 novel classes for different network architectures
and different datasets. (a) No additional classi�cation task was used during
training. (b) An additional classi�cation task was used during training

The different levels of accuracy improvement across all
datasets are partially due to the fact that two of the datasets
consist of natural images and that different numbers of classes
are available for training in each dataset. Siamese networks
generalize better when the dataset has more classes. We

Fig. 5. 5-way 1-shot classi�cation accuracy on Omniglot for an increasing
number of training classes.

con�rmed this trend on Omniglot, which consists of 1618
classes for training. Fig. 5 shows that even on this simple
dataset, we need at least 250 training classes to reach the
maximum accuracy. For Roshambo, only 15 distinct classes
were used during training, while for Tiny-Imagenet we had
195 classes.

B. Hardware performance metrics

We compare the performance of the S-multires-edge net-
work on 4 different devices which use different bit precision
values for activations and weights. The desktop GPU (1080 Ti)
and the Jetson Nano support �oating-point bit precision but the
other 2 platforms support lower bit precision for weights and
activations for reduced energy consumption. Table IV shows
the performance metrics of running this network including
bit precision, inference time, and test accuracy on 5 novel
classes. The evaluation was done on the Tiny-Imagenet dataset.
The S-multires-edge network for this dataset has 4.75 million
parameters, about 25.8% lower than the 5.5 million parameters
of the S-multires network. Its accuracy of 49.6% for 32-bit
precision is about 5.33% lower than the S-multires but the
smaller network can be benchmarked on all 4 devices. S-
multires-edge achieves 49.3% when quantized to 8-bit weight
precision and 16-bit activation precision. When quantized to
8-bit for weights and activations, the accuracy stands at 49.8%.

TABLE IV
PERFORMANCE OFS-MULTIRES-EDGE NETWORK ON DIFFERENT DEVICES.

GTX 1080 Ti Jetson Nano Edge TPU Carbon

Weight precision 32-bit 32-bit 8-bit 8-bit

Activation precision 32-bit 32-bit 8-bit 16-bit

Accuracy 49.6% 49.6% 49.8% 49.3%

Inference time [ms]* 15.8� 0.6 329.4� 40.0 19.8� 0.4 35.2� 0.1**

Frames per second [FPS] 63.3 3.0 50.6 28.4

Average throughput [GOP/s] 577 28 462 259

Peak utilization 5.1% 5.9% 11.5% 4.5%

* Numbers represent the mean and standard deviation over 1000 5-way classi�cations. All measure-
ments are performed on the Tiny-Imagenet dataset.

** Due to the time length of Carbon simulations, we limited the trials to 100 frames.

TABLE V
TEST RESULTS ON5 NOVEL CLASSES FOR DIFFERENT WEIGHT SPARSITY LEVELS OFS-MULTIRES-EDGE ONCARBON ON THE TINY-IMAGENET DATASET.

Target weight sparsity 0% 10% 25% 50% 75% 90%

Accuracy 49:3% � 8:8% 47:5% � 7:5% 48:0% � 9:7% 44:4% � 7:7% 40:4% � 6:1% 36:0% � 5:5%

Inference time [ms] 35:2 � 0:1 33:9 � 0:2 26:6 � 0:2 19:8 � 0:1 13:6 � 0:2 10:9 � 0:1

Average throughput [GOP/s] 259 266 339 461 661 837

Both accuracy values are within the� 4.52% accuracy stan-
dard deviation for S-multires and the Tiny-Imagenet dataset
(Table III), con�rming that it is possible to quantize these
models without sacri�cing accuracy.

S-multires-edge performs 1.5 Giga Operations (GOp) for a
pair of images. The deep-learning-dedicated hardware enabled
both the Edge TPU (19.75 ms or 50.6 FPS) and Carbon
(35.21 ms or 28.4 FPS) to achieve an inference time com-
parable to a much more powerful and power hungry NVIDIA
GTX 1080 TI workstation GPU (15.80 ms or 63.3 FPS). By
contrast, the Jetson Nano is not suitable for real-time inference
at 3 FPS.

C. Effect of weight sparsity

Training a network for weight sparsity is useful because
the required memory footprint of the network will be lower.
In this subsection, we report on results for the inference times
on Carbon which supports zero-skipping, and the accuracy of
S-multires-edge trained for 5 sparsity levels as described in the
previous section. The other edge devices benchmarked here
do not support zero-skipping. Table V shows that increasing
the weight sparsity in S-multires-edge leads to a signi�cant
improvement of the inference time, with a variation in accu-
racy of about 1% for a target sparsity of 25% and a drop
of 4.9% for 50% sparsity. However, higher levels of sparsity
strongly impact the classi�cation capabilities of the network:
while still being better than the 20% chance level, in the
extreme case of 90% target weight sparsity, the accuracy drops
to 36.60%. Better training methods for weight sparsity will

help to improve the accuracy [51]. The reported sparsity refers
to the target provided to the algorithm at the beginning of
the training. The effective value can differ from it, especially
for quantized networks. In our tests, the effective sparsity is
constantly 5% to 15% higher than the target, e.g. our target
sparsity of 25% results in our tests in an effective sparsity of
about 40%.

D. One-branch vs Siamese classi�cation

Unlike Siamese networks, traditional one-branch classi�ca-
tion models that do not compute similarity cannot classify
new objects without retraining. This results in high latencies
whenever new objects must be learned. In this section we
compared the inference time of the S-multires architecture to
a similar one-branch classi�cation model taking into account
the time it takes to do the retraining for the one-branch
classi�er. We designed a standard classi�cation network using
one branch of the S-multires network along with the trunk. As
there is only one input to the network, the concatenation layer
was removed. The number of output units is increased from
1 to 5 and the sigmoid activation is replaced by a softmax.
This architecture can be seen in Fig. 6. Except for the output
layer, this architecture has the same number of parameters as
the S-multires Siamese network.

On Tiny-Imagenet, the one-branch model takes 5.04 ms to
classify an image, while the Siamese network requires 15.8 ms
for the same task. However, in the case of Siamese networks,
parts of the network graph can be pre-computed. Because
Siamese networks perform comparisons with immutable class

Fig. 6. One-branch conventional classi�er, based on the S-multires architecture

TABLE VI
ONE-BRANCH VERSUSSIAMESE CLASSIFIER INFERENCE TIMES.

Omniglot Tiny-Imagenet CIFAR100 Roshambo

Input size 105� 105� 1 64� 64� 3 32� 32� 3 64� 64� 1

One-branch network
inference time

6.0� 0.3 ms 5.0� 0.4 ms 4.3� 0.7 ms 5.0� 0.3 ms

Siamese (S-multires)
inference time

25.3� 1.4 ms 15.8� 0.6 ms 7.8� 0.9 ms 16.3� 1.9 ms

Inference time in ms for a normal one-branch classi�cation CNN (1 branch, 5 outputs)vs. Siamese network (2
branches, 1 output, 5-way classi�cation).

All measurements performed on an NVIDIA GTX 1080Ti GPU using the S-multires architecture

prototypes, the branch embeddings for each of the prototypes
can be stored instead of computed at each run. This means
that whenever we have an image from a new class that the
network has not seen before, all we have to compute is the
embedding for a prototype representing that class and the
embedding for the query image. In addition, we need to
perform the comparisons between the test image and all the
stored prototypes. In total, we need to run the branch twice
and the comparisons as many times as there are classes to
compare against. For example, when we want to classify a
5th novel class, the inference time would be 2� 2.54 ms (the
time it takes to run a branch) + 5� 1.18 ms (one comparison
for each of the 5 classes). The total latency would be 11 ms.
Although this inference time for a 5-class classi�cation with
a Siamese network is two times longer than that of the one-
branch classi�er, Siamese networks have the advantage that
they do not need retraining. To retrain on the 5 novel classes
would require 60 s for each epoch (with about 1000 samples
per novel class), or around 1.5 hours for a full training on a
desktop GPU, which is roughly 491.000 times more expensive
in terms of time than running a Siamese network.

VI. D ISCUSSION AND CONCLUSION

A. Siamese Network Model

In an attempt to reduce the accuracy gap for novel classes
between one-shot and incremental learning algorithms, in [11]
we proposed novel architectural modi�cations to the original
Siamese networks and adopted a hybrid training mechanism

where classi�cation and similarity tasks are combined at train-
ing time, but not at inference time. In this paper we describe
an additional exploration that combines the original branch
architecture seen on Fig. 2(a) with the convolutional similarity
module seen on Fig. 3(c). We achieve overall improvements of
1.9%, 22.6%, 19.0% and 12.1% respectively compared to the
baselineS-subtractSiamese network when tested on Omniglot,
Tiny-Imagenet, Cifar100 and Roshambo. Our multi-resolution
Siamese architecture contributes the most to the increase in
accuracy, by almost 10%.

The state-of-art accuracy on Omniglot is 99.5% and is
achieved with meta-learning [52]. Although our best result on
Omniglot is slightly below state-of-art, we achieve this result
using a much simpler and more �exible algorithm. Similarly,
state-of-the-art results have been achieved with meta-learning
[53] on different subsets of the ImageNet and CIFAR100
benchmarks. Because of the different dataset subset selections,
our results are not directly comparable with these works.

Our accuracy results are lower than what some incremental
learning methods achieve [10], [54], but could be improved
by performing a K-shot instead of the 1-shot classi�cation we
are currently testing. However, this increase in accuracy will
come at the cost of higher memory requirements and additional
computation.

Our algorithm improves upon the inference times of the
incremental learning algorithms mentioned above while main-
taining a much higher than chance accuracy. It also has the
advantage of not using backpropagation. For example, in [55]

we showed how iCaRL [10] can be successfully used to
learn event-based hand symbols incrementally. However, the
algorithm required two minutes of training time for every two
novel classes, even with a powerful NVIDIA GTX 1080 Ti
GPU. The Siamese networks used in this study can classify
novel samples from the same event-based Roshambo dataset
in only 15 ms on an edge device.

B. Hardware evaluation

To evaluate if our proposed architectural model modi�-
cations are compatible with modern edge neural network
accelerators, we tested the improved Siamese network on three
different platforms (Coral Edge TPU, NVIDIA Jetson Nano
and our custom Carbon accelerator), using a workstation GPU
(NVIDIA GTX 1080 TI) as reference.

Quantization is a widely adopted technique to reduce the
computational load of neural networks. We show how it
can be safely used for Siamese networks, achieving a small
accuracy reduction in the case of Carbon quantization (-0.4%)
and a slight increase (+0.2%) for the Edge TPU (Table IV).
Moreover, the networks that we run on the Edge TPU were
quantized post-training. This was required due to an incom-
patibility between the version of Tensor�ow we used and in-
training quantization process needed for the Edge TPU. In-
training quantization is known to be superior to post-training
quantization [56], [57]. Therefore, the accuracy of the network
on the quantized Edge TPU platform might be even higher.

Weight pruning is another popular technique to accelerate
neural network inference by increasing sparsity. To assess its
validity in the context of Siamese networks, we trained our
S-multires-edge model with multiple levels of weight sparsity
and tested it on our Carbon platform. Our results (Table V)
show how pruning can be used to obtain performance that is on
par with that of a workstation: running a 5-way classi�cation
with an effective sparsity of 85.98% takes 13.60 ms whereas
the same classi�cation for an effective sparsity of 94.67%
takes 10.88 ms. While quantizing the network reduced latency
without a signi�cant accuracy drop, weight pruning impacted
the accuracy severely.

An important question we aimed to answer with this work
was how ef�ciently edge devices can handle complex network
topologies such as the proposed Siamese network architecture.
In Table IV, we report the peak utilization, which is the ratio
between the maximum throughput of each platform and the
effective measured performance. Overall, all the tested plat-
forms underperform, ranging from 4.47% resource utilization
(Carbon) to 11.54% (Edge TPU). All the three edge platforms
are designed to exploit the high level of parallelism and
regularity of CNNs. The complexity of the S-multires-edge
model with its multiple kernel resolutions, few kernels per
layer and many concatenation operations seems to undermine
the ability of the edge platforms to make full use of the
available resources. In the last decade, convolutional layers
have been the research focus for CNNs accelerators. As the
compute time of convolutions decreases, the relative cost of
other operations such as concatenation increases, opening new

possible research threads on hardware. Similarly, the software
handling the mapping of the models to the hardware have a
clear margin of improvement and can be the focus of future
major work.

Because Siamese Networks do not require retraining unlike
other incremental learning techniques in few-shot learning,
they are ideal for edge platforms which do not include on-
chip training resources. The benchmarking results show that
we can run our Siamese classi�er at 60 FPS on the Edge
TPU, making it suitable for real-time applications. Further
algorithmic research will be carried out to determine alternate
ways for training Siamese networks so that their classi�cation
accuracies during inference approach the state-of-art results
from pure classi�cation networks.

REFERENCES

[1] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[2] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” inPsychology of
Learning and Motivation, G. H. Bower, Ed. Academic Press, 1989,
vol. 24, pp. 109–165.

[3] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang, “A
closer look at few-shot classi�cation,”ICLR, no. 2018, pp. 1–16, 2019.
[Online]. Available: http://arxiv.org/abs/1904.04232

[4] E. Bart and S. Ullman, “Cross-generalization: learning novel classes
from a single example by feature replacement,” in2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR'05), vol. 1, 2005, pp. 672–679 vol. 1.

[5] Y. Wang, R. Girshick, M. Hebert, and B. Hariharan, “Low-shot learning
from imaginary data,” in2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 7278–7286.

[6] A. Antoniou, A. Storkey, and H. Edwards, ”Augmenting image clas-
si�ers using data augmentation generative adversarial networks.” in
International Conference on Arti�cial Neural Networks, pp. 594-603.
Springer, Cham, 2018.

[7] J. Vanschoren, ”Meta-learning.” inAutomated Machine Learning, pp.
35-61. Springer, Cham, 2019.

[8] J. Bromley, J. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. S̈ackinger, and R. Shah, “Signature veri�cation using a ”siamese”
time delay neural network,” inInt. J. Patt. Recognit. Artif. Intell., 1993.

[9] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” inProceedings of the 32nd International
Conference on Machine Learning, Lille, France, vol. 2, 2015.

[10] S.-A. Rebuf�, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL:
Incremental classi�er and representation learning,” inIEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[11] I. A. Lungu, Y. Hu, and S. Liu, “Multi-resolution siamese networks
for one-shot learning,” in2020 2nd IEEE International Conference on
Arti�cial Intelligence Circuits and Systems (AICAS), 2020, pp. 183–187.

[12] B. M. Lake, R. Salakhutdinov, and J. Tenenbaum, “Human-level concept
learning through probabilistic program induction,”Science, vol. 350, pp.
1332 – 1338, 2015.

[13] “Tiny ImageNet Visual Recognition Challenge.” [Online]. Available:
https://tiny-imagenet.herokuapp.com/

[14] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2012.

[15] I. A. Lungu, S.-C. Liu, and T. Delbruck, “Fast event-driven incremental
learning of hand symbols,” in2019 IEEE International Conference on
Arti�cial Intelligence Circuits and Systems (AICAS), 2019, pp. 25–28.

[16] NVIDIA, “Jetson nano.” [Online]. Available: https://developer.nvidia.
com/embedded/jetson-nano-developer-kit

[17] Coral, “Tensor�ow models on the edge tpu.” [Online]. Available:
https://coral.ai/docs/edgetpu/models-intro/

[18] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” inAdvances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016,
pp. 3630–3638.

[19] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” inAdvances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 4077–4087.

[20] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” inProceedings of the 34th Interna-
tional Conference on Machine Learning - Volume 70, ser. ICML'17.
JMLR.org, 2017, pp. 1126–1135.

[21] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face veri�cation,” in2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR'05), vol. 1, June 2005, pp. 539–546 vol. 1.

[22] R. R. Varior, M. Haloi, and G. Wang, “Gated siamese convolutional
neural network architecture for human re-identi�cation,” inEuropean
Conference on Computer Vision. Springer, 2016, pp. 791–808.

[23] Y. Shen, H. Li, S. Yi, D. Chen, and X. Wang, “Person re-identi�cation
with deep similarity-guided graph neural network,” inComputer Vision
– ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss,
Eds. Cham: Springer International Publishing, 2018, pp. 508–526.

[24] U. Chaudhuri, B. Banerjee, and A. Bhattacharya, “Siamese graph
convolutional network for content based remote sensing image
retrieval,” Computer Vision and Image Understanding, vol. 184, pp.
22–30, 2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1077314219300578

[25] A. Gordo, J. Almaźan, J. Revaud, and D. Larlus, “End-to-end learning
of deep visual representations for image retrieval,”International Journal
of Computer Vision, vol. 124, no. 2, pp. 237–254, 2017. [Online].
Available: http://www.xrce.xerox.

[26] W. Luo, A. G. Schwing, and R. Urtasun, “Ef�cient deep learning
for stereo matching,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,
vol. 2016-Decem, 2016, pp. 5695–5703. [Online]. Available: http:
//www.cs.toronto.edu/

[27] R. P. P�ugfelder, “Siamese learning visual tracking: A survey,”CoRR,
vol. abs/1707.00569, 2017.

[28] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching Networks for One Shot Learning,” inAdvances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016,
pp. 3630–3638.

[29] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” inThe
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

[30] A. Nichol, J. Achiam, and J. Schulman, “On �rst-order meta-learning
algorithms,”CoRR, vol. abs/1803.02999, 2018.

[31] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell, “Meta-learning with latent embedding optimization,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=BJgklhAcK7

[32] C. Wang, S. Dong, X. Zhao, G. Papanastasiou, H. Zhang, and G. Yang,
“SaliencyGAN: Deep learning semisupervised salient object detection in
the Fog of IoT,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 4, pp. 2667–2676, 2020.

[33] D. Zhang, D. Meng, and J. Han, “Co-saliency detection via a self-paced
multiple-instance learning framework,”IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 39, no. 5, pp. 865–878, 2017.

[34] L. Cavigelli and L. Benini, “Origami: A 803-GOp/s/w convolutional
network accelerator,”IEEE Transactions on Circuits and Systems for
Video Technology, vol. 27, no. 11, pp. 2461–2475, Nov 2017.

[35] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. S. Emer, S. W. Keckler, and W. J. Dally, “SCNN:
An accelerator for compressed-sparse convolutional neural networks,”
CoRR, vol. abs/1708.04485, 2017.

[36] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Oct 2016, pp. 1–12.

[37] V. Gokhale, A. Zaidy, A. X. M. Chang, and E. Culurciello, “Snow�ake:
An ef�cient hardware accelerator for convolutional neural networks,” in
2017 IEEE International Symposium on Circuits and Systems (ISCAS),
May 2017, pp. 1–4.

[38] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst, “Binar-
Eye: An always-on energy-accuracy-scalable binary CNN processor with
all memory on chip in 28nm CMOS,” in2018 IEEE Custom Integrated
Circuits Conference (CICC), April 2018, pp. 1–4.

[39] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-
Morales, I. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco, S.-
C. Liu, and T. Delbruck, “NullHop: A �exible convolutional neural
network accelerator based on sparse representations of feature maps,”
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13,
2018.

[40] E. Ceolini, J. Anumula, S. Braun, and S.-C. Liu, “Event-driven pipeline
for low-latency low-compute keyword spotting and speaker veri�cation
system,” in2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2019, pp. 7953–7957.

[41] M. Baharani, S. Mohan, and H. Tabkhi, “Real-time person re-
identi�cation at the edge: A mixed precision approach,” inInternational
Conference on Image Analysis and Recognition. Springer, 2019, pp.
27–39.

[42] Z. Zheng, L. Zheng, and Y. Yang, “A discriminatively learned cnn
embedding for person reidenti�cation,”ACM Trans. Multimedia Comput.
Commun. Appl., vol. 14, no. 1, pp. 13:1–13:20, 2017.

[43] X. Liu, Y. Zhou, J. Zhao, R. Yao, B. Liu, and Y. Zheng, “Siamese
convolutional neural networks for remote sensing scene classi�cation,”
IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 8, pp. 1200–
1204, Aug 2019.

[44] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 1–9.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in2009 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009.

[46] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240� 180
130dB 3� s latency global shutter spatiotemporal vision sensor,”IEEE
Journal of Solid-State Circuits, vol. 49, pp. 2333–2341, 2014.

[47] D. P. Moeys, F. Corradi, E. Kerr, P. Vance, G. Das, D. Neil, D. Kerr,
and T. Delbruck, “Steering a predator robot using a mixed frame/event-
driven convolutional neural network,” in2016 Second International Con-
ference on Event-based Control, Communication, and Signal Processing
(EBCCSP), June 2016, pp. 1–8.

[48] I. Lungu, F. Corradi, and T. Delbruck, “Live demonstration: Con-
volutional neural network driven by Dynamic Vision Sensor playing
RoShamBo,” in2017 IEEE International Symposium on Circuits and
Systems (ISCAS), May 2017, pp. 1–1.

[49] Tensor�ow, “Quantization aware training comprehensive guide.”
[Online]. Available: https://www.tensor�ow.org/modeloptimization/
guide/quantization/trainingcomprehensiveguide

[50] ——, “Pruning comprehensive guide.” [Online]. Available: https://www.
tensor�ow.org/modeloptimization/guide/pruning/comprehensiveguide

[51] D. W. Blalock, J. J. G. Ortiz, J. Frankle, and J. V. Guttag, “What is the
state of neural network pruning?” inProceedings of Machine Learning
and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020, I. S.
Dhillon, D. S. Papailiopoulos, and V. Sze, Eds. mlsys.org, 2020.

[52] Y. Lee and S. Choi, “Gradient-based meta-learning with learned layer-
wise metric and subspace,” inICML, 2018.

[53] L. Song, J. Liu, and Y. Qin, “Fast and generalized adaptation for few-
shot learning,”ArXiv, vol. abs/1911.10807, 2019.

[54] F. M. Castro, M. J. Marin-Jimenez, N. Guil, C. Schmid, and K. Alahari,
“End-to-end incremental learning,” inThe European Conference on
Computer Vision (ECCV), September 2018.

[55] I. A. Lungu, S. Liu, and T. Delbruck, “Fast event-driven incremental
learning of hand symbols,” in2019 IEEE International Conference on
Arti�cial Intelligence Circuits and Systems (AICAS), 2019, pp. 25–28.

[56] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN: Wide
reduced-precision networks,” inInternational Conference on Learning
Representations, 2018.

[57] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and
S.-C. Liu, “Robustness of spiking deep belief networks to noise and
reduced bit precision of neuro-inspired hardware platforms,”Frontiers
in Neuroscience, vol. 9, p. 222, 2015.

AUTHOR INFORMATION

Iulia-Alexandra Lungu received her BSc in Bioin-
formatics from the University Claude Bernard Lyon
and her MSc in Computational Neuroscience from
the Technical University of Berlin. She is now pur-
suing her PhD degree at the Institute of Neuroinfor-
matics, where she works with talented hardware de-
signers to develop ef�cient and powerful algorithms
and hardware solutions for AI. Her main interests
revolve around incremental and few-shot learning.

Alessandro Aimar received his B.Sc. degree in
Physical Engineering from Politecnico di Torino
(Italy) and his M.Sc. degree in Nanotechnologies
from a joint program of Politecnico di Torino, INP
Grenoble (France) and EPFL (Switzerland). After
working as engineer at Imagination Technologies
(UK) he joined the Institute of Neuroinformatics
for his PhD. In 2019 he founded Synthara AG, a
startup focused on deep learning and neuromorphic
hardware.

Yuhuang Hu received his BSc in Computer Science
from the University of Malaya in 2015 and Joint
MSc in Neural Systems and Computation from the
University of Zürich and ETH Z̈urich in 2017.
He is currently a PhD student at the Institute of
Neuroinformatics, University of Z̈urich and ETH
Zürich. His main research interests include deep neu-
ral networks, self-supervised learning, event-based
processing, and computer vision.

Tobi Delbruck (M'99–SM'06–F'13) received the
B.Sc. degree in physics from University of Califor-
nia in 1986 and PhD degree from California Institute
of Technology in 1993. Currently, he is a Profes-
sor of Physics and Electrical Engineering with the
Institute of Neuroinformatics, University of Zurich
and ETH Zurich, where he has been since 1998.
His interests include dynamic vision sensor silicon
retina event cameras, data-driven deep neural net-
work hardware accelerators, robotics, and dynamical
systems control applications of these technologies.

Shih-Chii Liu (M'02–SM'07) received her PhD
degree in Computation and Neural Systems from
the California Institute of Technology, Pasadena, in
1997. She worked at various companies, includ-
ing Gould American Microsystems, LSI Logic, and
Rockwell International Research Labs. Currently,
she is a professor with the Institute of Neuroinfor-
matics at the University of Zurich, Switzerland. Her
interests include low-power neuromorphic event-
driven sensor design; bio-inspired and deep learning
algorithms and hardware for energy-ef�cient, real-

time, adaptive intelligent systems.

