Header

UZH-Logo

Maintenance Infos

Host‐plant availability drives the spatiotemporal dynamics of interacting metapopulations across a fragmented landscape


Opedal, Øystein H; Ovaskainen, Otso; Saastamoinen, Marjo; Laine, Anna‐Liisa; Nouhuys, Saskya (2020). Host‐plant availability drives the spatiotemporal dynamics of interacting metapopulations across a fragmented landscape. Ecology, 101(12):e03186.

Abstract

The dynamics of ecological communities depend partly on species interactions within and among trophic levels. Experimental work has demonstrated the impact of species interactions on the species involved, but it remains unclear whether these effects can also be detected in long‐term time series across heterogeneous landscapes. We analyzed a 19‐yr time series of patch occupancy by the Glanville fritillary butterfly Melitaea cinxia, its specialist parasitoid wasp Cotesia melitaearum, and the specialist fungal pathogen Podosphaera plantaginis infecting Plantago lanceolata, a host plant of the Glanville fritillary. These species share a network of more than 4,000 habitat patches in the Åland islands, providing a metacommunity data set of unique spatial and temporal resolution. To assess the influence of interactions among the butterfly, parasitoid, and mildew on metacommunity dynamics, we modeled local colonization and extinction rates of each species while including or excluding the presence of potentially interacting species in the previous year as predictors. The metapopulation dynamics of all focal species varied both along a gradient in host plant abundance, and spatially as indicated by strong effects of local connectivity. Colonization and to a lesser extent extinction rates depended also on the presence of interacting species within patches. However, the directions of most effects differed from expectations based on previous experimental and modeling work, and the inferred influence of species interactions on observed metacommunity dynamics was limited. These results suggest that although local interactions among the butterfly, parasitoid, and mildew occur, their roles in metacommunity spatiotemporal dynamics are relatively weak. Instead, all species respond to variation in plant abundance, which may in turn fluctuate in response to variation in climate, land use, or other environmental factors.

Abstract

The dynamics of ecological communities depend partly on species interactions within and among trophic levels. Experimental work has demonstrated the impact of species interactions on the species involved, but it remains unclear whether these effects can also be detected in long‐term time series across heterogeneous landscapes. We analyzed a 19‐yr time series of patch occupancy by the Glanville fritillary butterfly Melitaea cinxia, its specialist parasitoid wasp Cotesia melitaearum, and the specialist fungal pathogen Podosphaera plantaginis infecting Plantago lanceolata, a host plant of the Glanville fritillary. These species share a network of more than 4,000 habitat patches in the Åland islands, providing a metacommunity data set of unique spatial and temporal resolution. To assess the influence of interactions among the butterfly, parasitoid, and mildew on metacommunity dynamics, we modeled local colonization and extinction rates of each species while including or excluding the presence of potentially interacting species in the previous year as predictors. The metapopulation dynamics of all focal species varied both along a gradient in host plant abundance, and spatially as indicated by strong effects of local connectivity. Colonization and to a lesser extent extinction rates depended also on the presence of interacting species within patches. However, the directions of most effects differed from expectations based on previous experimental and modeling work, and the inferred influence of species interactions on observed metacommunity dynamics was limited. These results suggest that although local interactions among the butterfly, parasitoid, and mildew occur, their roles in metacommunity spatiotemporal dynamics are relatively weak. Instead, all species respond to variation in plant abundance, which may in turn fluctuate in response to variation in climate, land use, or other environmental factors.

Statistics

Citations

Altmetrics

Downloads

2 downloads since deposited on 17 Feb 2021
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Uncontrolled Keywords:Ecology, Evolution, Behavior and Systematics
Language:English
Date:1 December 2020
Deposited On:17 Feb 2021 16:55
Last Modified:18 Feb 2021 21:00
Publisher:Ecological Society of America
ISSN:1939-9170
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/ecy.3186
Project Information:
  • : FunderH2020
  • : Grant ID637412
  • : Project TitleMETA-STRESS - Unravelling life-history responses and underlying mechanisms to environmental stress in wild populations

Download

Hybrid Open Access

Download PDF  'Host‐plant availability drives the spatiotemporal dynamics of interacting metapopulations across a fragmented landscape'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)