Header

UZH-Logo

Maintenance Infos

Optical and Optoacoustic Imaging


Razansky, Daniel; Ntziachristos, Vasilis (2020). Optical and Optoacoustic Imaging. In: Schober, Otmar; Kiessling, Fabian; Debus, Jürgen. Molecular Imaging in Oncology. Cham: Springer, 155-187.

Abstract

The present chapter summarizes progress with optical methods that go beyond human vision. The focus is on two particular technologies: fluorescence molecular imaging and optoacoustic (photoacoustic) imaging. The rationale for the selection of these two methods is that in contrast to optical microscopy techniques, both fluorescence and optoacoustic imaging can achieve large fields of view, i.e., spanning several centimeters in two or three dimensions. Such fields of views relate better to human vision and can visualize large parts of tissue, a necessary premise for clinical detection. Conversely, optical microscopy methods only scan millimeter-sized dimensions or smaller. With such operational capacity, optical microscopy methods need to be guided by another visualization technique in order to scan a very specific area in tissue and typically only provide superficial measurements, i.e., information from depths that are of the order of 0.05–1 mm. This practice has generally limited their clinical applicability to some niche applications, such as optical coherence tomography of the retina. On the other hand, fluorescence molecular imaging and optoacoustic imaging emerge as more global optical imaging methods with wide applications in surgery, endoscopy, and non-invasive clinical imaging, as summarized in the following. The current progress in this field is based on a volume of recent review and other literature that highlights key advances achieved in technology and biomedical applications. Context and figures from references from the authors of this chapter have been used here, as it reflects our general view of the current status of the field.

Abstract

The present chapter summarizes progress with optical methods that go beyond human vision. The focus is on two particular technologies: fluorescence molecular imaging and optoacoustic (photoacoustic) imaging. The rationale for the selection of these two methods is that in contrast to optical microscopy techniques, both fluorescence and optoacoustic imaging can achieve large fields of view, i.e., spanning several centimeters in two or three dimensions. Such fields of views relate better to human vision and can visualize large parts of tissue, a necessary premise for clinical detection. Conversely, optical microscopy methods only scan millimeter-sized dimensions or smaller. With such operational capacity, optical microscopy methods need to be guided by another visualization technique in order to scan a very specific area in tissue and typically only provide superficial measurements, i.e., information from depths that are of the order of 0.05–1 mm. This practice has generally limited their clinical applicability to some niche applications, such as optical coherence tomography of the retina. On the other hand, fluorescence molecular imaging and optoacoustic imaging emerge as more global optical imaging methods with wide applications in surgery, endoscopy, and non-invasive clinical imaging, as summarized in the following. The current progress in this field is based on a volume of recent review and other literature that highlights key advances achieved in technology and biomedical applications. Context and figures from references from the authors of this chapter have been used here, as it reflects our general view of the current status of the field.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Book Section, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology

04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Scopus Subject Areas:Health Sciences > Oncology
Life Sciences > Cancer Research
Language:English
Date:1 January 2020
Deposited On:19 Feb 2021 15:23
Last Modified:20 Feb 2021 21:00
Publisher:Springer
ISBN:9783030426170
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/978-3-030-42618-7_5

Download

Full text not available from this repository.
View at publisher

Get full-text in a library