Header

UZH-Logo

Maintenance Infos

AI support for ethical decision-making around resuscitation: proceed with care


Biller-Andorno, Nikola; Ferrario, Andrea; Joebges, Susanne; Krones, Tanja; Massini, Federico; Barth, Phyllis; Arampatzis, Georgios; Krauthammer, Michael (2021). AI support for ethical decision-making around resuscitation: proceed with care. Journal of Medical Ethics:Epub ahead of print.

Abstract

Artificial intelligence (AI) systems are increasingly being used in healthcare, thanks to the high level of performance that these systems have proven to deliver. So far, clinical applications have focused on diagnosis and on prediction of outcomes. It is less clear in what way AI can or should support complex clinical decisions that crucially depend on patient preferences. In this paper, we focus on the ethical questions arising from the design, development and deployment of AI systems to support decision-making around cardiopulmonary resuscitation and the determination of a patient’s Do Not Attempt to Resuscitate status (also known as code status). The COVID-19 pandemic has made us keenly aware of the difficulties physicians encounter when they have to act quickly in stressful situations without knowing what their patient would have wanted. We discuss the results of an interview study conducted with healthcare professionals in a university hospital aimed at understanding the status quo of resuscitation decision processes while exploring a potential role for AI systems in decision-making around code status. Our data suggest that (1) current practices are fraught with challenges such as insufficient knowledge regarding patient preferences, time pressure and personal bias guiding care considerations and (2) there is considerable openness among clinicians to consider the use of AI-based decision support. We suggest a model for how AI can contribute to improve decision-making around resuscitation and propose a set of ethically relevant preconditions—conceptual, methodological and procedural—that need to be considered in further development and implementation efforts.

Abstract

Artificial intelligence (AI) systems are increasingly being used in healthcare, thanks to the high level of performance that these systems have proven to deliver. So far, clinical applications have focused on diagnosis and on prediction of outcomes. It is less clear in what way AI can or should support complex clinical decisions that crucially depend on patient preferences. In this paper, we focus on the ethical questions arising from the design, development and deployment of AI systems to support decision-making around cardiopulmonary resuscitation and the determination of a patient’s Do Not Attempt to Resuscitate status (also known as code status). The COVID-19 pandemic has made us keenly aware of the difficulties physicians encounter when they have to act quickly in stressful situations without knowing what their patient would have wanted. We discuss the results of an interview study conducted with healthcare professionals in a university hospital aimed at understanding the status quo of resuscitation decision processes while exploring a potential role for AI systems in decision-making around code status. Our data suggest that (1) current practices are fraught with challenges such as insufficient knowledge regarding patient preferences, time pressure and personal bias guiding care considerations and (2) there is considerable openness among clinicians to consider the use of AI-based decision support. We suggest a model for how AI can contribute to improve decision-making around resuscitation and propose a set of ethically relevant preconditions—conceptual, methodological and procedural—that need to be considered in further development and implementation efforts.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Ethics and History of Medicine
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:Health Policy, Arts and Humanities (miscellaneous), Issues, ethics and legal aspects, Health(social science)
Language:English
Date:9 March 2021
Deposited On:11 Mar 2021 06:38
Last Modified:11 Mar 2021 06:40
Publisher:BMJ Publishing Group
ISSN:0306-6800
OA Status:Closed
Free access at:Related URL. An embargo period may apply.
Publisher DOI:https://doi.org/10.1136/medethics-2020-106786
Related URLs:https://www.zora.uzh.ch/id/eprint/197943/
https://www.medrxiv.org/content/10.1101/2020.08.17.20171769v1
PubMed ID:33687916

Download

Full text not available from this repository.
View at publisher

Get full-text in a library