Header

UZH-Logo

Maintenance Infos

Record of North American boreal forest fires in northwest Greenland snow


Kang, Jung-Ho; Hwang, Heejin; Lee, Sang-Jin; Choi, Sung-Deuk; Kim, Jin-Soo; Hong, Sangbum; Hur, Soon Do; Baek, Je-Hyun (2021). Record of North American boreal forest fires in northwest Greenland snow. Chemosphere, 276:130187.

Abstract

We present boreal forest fire proxies in a northwest Greenland snowpit spanning a period of six years, from spring 2003 to summer 2009. Levoglucosan (C6H10O5) is a specific organic molecular marker of biomass burning caused by boreal forest fires. In this study, levoglucosan was determined via liquid chromatography/negative ion electrospray ionization-tandem mass spectrometry, wherein isotope-dilution and multiple reaction monitoring methods are employed. Ammonium (NH4+) and oxalate (C2O42–), traditional biomass burning proxies, were determined using two-channel ion chromatography. In the northwest Greenland snowpit, peaks in levoglucosan, ammonium, and oxalate were observed in snow layers corresponding to the summer–fall seasons of 2004 and 2005. Considered together, these spikes are a marker for large boreal forest fires. The levoglucosan deposited in the Greenland snow was strongly dependent on long-range atmospheric transportation. A 10-day backward air mass trajectory analysis supports that the major contributors were air masses from North America. In addition, satellite-derived carbon monoxide (CO) and ammonia (NH3) concentrations suggest that chemicals from North American boreal forest fires during the summer–fall of 2004 and 2005 were transported to Greenland. However, large boreal fires in Siberia in 2003 and 2008 were not recorded in the snowpit. The sub-annual resolution measurements of levoglucosan and ammonium can distinguish between the contributions of past boreal forest fires and soil emissions from anthropogenic activity to Greenland snow and ice.

Abstract

We present boreal forest fire proxies in a northwest Greenland snowpit spanning a period of six years, from spring 2003 to summer 2009. Levoglucosan (C6H10O5) is a specific organic molecular marker of biomass burning caused by boreal forest fires. In this study, levoglucosan was determined via liquid chromatography/negative ion electrospray ionization-tandem mass spectrometry, wherein isotope-dilution and multiple reaction monitoring methods are employed. Ammonium (NH4+) and oxalate (C2O42–), traditional biomass burning proxies, were determined using two-channel ion chromatography. In the northwest Greenland snowpit, peaks in levoglucosan, ammonium, and oxalate were observed in snow layers corresponding to the summer–fall seasons of 2004 and 2005. Considered together, these spikes are a marker for large boreal forest fires. The levoglucosan deposited in the Greenland snow was strongly dependent on long-range atmospheric transportation. A 10-day backward air mass trajectory analysis supports that the major contributors were air masses from North America. In addition, satellite-derived carbon monoxide (CO) and ammonia (NH3) concentrations suggest that chemicals from North American boreal forest fires during the summer–fall of 2004 and 2005 were transported to Greenland. However, large boreal fires in Siberia in 2003 and 2008 were not recorded in the snowpit. The sub-annual resolution measurements of levoglucosan and ammonium can distinguish between the contributions of past boreal forest fires and soil emissions from anthropogenic activity to Greenland snow and ice.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 10 Mar 2021
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Physical Sciences > Environmental Engineering
Physical Sciences > General Chemistry
Physical Sciences > Environmental Chemistry
Physical Sciences > Pollution
Health Sciences > Public Health, Environmental and Occupational Health
Physical Sciences > Health, Toxicology and Mutagenesis
Uncontrolled Keywords:General Chemistry, Environmental Chemistry, General Medicine
Language:English
Date:1 August 2021
Deposited On:10 Mar 2021 14:10
Last Modified:06 Mar 2023 01:00
Publisher:Elsevier
ISSN:0045-6535
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1016/j.chemosphere.2021.130187