Header

UZH-Logo

Maintenance Infos

Object-Location Memory Training in Older Adults Leads to Greater Deactivation of the Dorsal Default Mode Network


Mikos, Ania; Malagurski, Brigitta; Liem, Franziskus; Mérillat, Susan; Jäncke, Lutz (2021). Object-Location Memory Training in Older Adults Leads to Greater Deactivation of the Dorsal Default Mode Network. Frontiers in Human Neuroscience, 15:623766.

Abstract

Substantial evidence indicates that cognitive training can be efficacious for older adults, but findings regarding training-related brain plasticity have been mixed and vary depending on the imaging modality. Recent years have seen a growth in recognition of the importance of large-scale brain networks on cognition. In particular, task-induced deactivation within the default mode network (DMN) is thought to facilitate externally directed cognition, while aging-related decrements in this neural process are related to reduced cognitive performance. It is not yet clear whether task-induced deactivation within the DMN can be enhanced by cognitive training in the elderly. We previously reported durable cognitive improvements in a sample of healthy older adults (age range = 60-75) who completed 6 weeks of process-based object-location memory training (N = 36) compared to an active control training group (N = 31). The primary aim of the current study is to evaluate whether these cognitive gains are accompanied by training-related changes in task-related DMN deactivation. Given the evidence for heterogeneity of the DMN, we examine task-related activation/deactivation within two separate DMN branches, a ventral branch related to episodic memory and a dorsal branch more closely resembling the canonical DMN. Participants underwent functional magnetic resonance imaging (fMRI) while performing an untrained object-location memory task at four time points before, during, and after the training period. Task-induced (de)activation values were extracted for the ventral and dorsal DMN branches at each time point. Relative to visual fixation baseline: (i) the dorsal DMN was deactivated during the scanner task, while the ventral DMN was activated; (ii) the object-location memory training group exhibited an increase in dorsal DMN deactivation relative to the active control group over the course of training and follow-up; (iii) changes in dorsal DMN deactivation did not correlate with task improvement. These results indicate a training-related enhancement of task-induced deactivation of the dorsal DMN, although the specificity of this improvement to the cognitive task performed in the scanner is not clear.

Abstract

Substantial evidence indicates that cognitive training can be efficacious for older adults, but findings regarding training-related brain plasticity have been mixed and vary depending on the imaging modality. Recent years have seen a growth in recognition of the importance of large-scale brain networks on cognition. In particular, task-induced deactivation within the default mode network (DMN) is thought to facilitate externally directed cognition, while aging-related decrements in this neural process are related to reduced cognitive performance. It is not yet clear whether task-induced deactivation within the DMN can be enhanced by cognitive training in the elderly. We previously reported durable cognitive improvements in a sample of healthy older adults (age range = 60-75) who completed 6 weeks of process-based object-location memory training (N = 36) compared to an active control training group (N = 31). The primary aim of the current study is to evaluate whether these cognitive gains are accompanied by training-related changes in task-related DMN deactivation. Given the evidence for heterogeneity of the DMN, we examine task-related activation/deactivation within two separate DMN branches, a ventral branch related to episodic memory and a dorsal branch more closely resembling the canonical DMN. Participants underwent functional magnetic resonance imaging (fMRI) while performing an untrained object-location memory task at four time points before, during, and after the training period. Task-induced (de)activation values were extracted for the ventral and dorsal DMN branches at each time point. Relative to visual fixation baseline: (i) the dorsal DMN was deactivated during the scanner task, while the ventral DMN was activated; (ii) the object-location memory training group exhibited an increase in dorsal DMN deactivation relative to the active control group over the course of training and follow-up; (iii) changes in dorsal DMN deactivation did not correlate with task improvement. These results indicate a training-related enhancement of task-induced deactivation of the dorsal DMN, although the specificity of this improvement to the cognitive task performed in the scanner is not clear.

Statistics

Citations

Altmetrics

Downloads

4 downloads since deposited on 23 Mar 2021
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
08 Research Priority Programs > Dynamics of Healthy Aging
Dewey Decimal Classification:150 Psychology
Scopus Subject Areas:Social Sciences & Humanities > Neuropsychology and Physiological Psychology
Life Sciences > Neurology
Health Sciences > Psychiatry and Mental Health
Life Sciences > Biological Psychiatry
Life Sciences > Behavioral Neuroscience
Language:English
Date:2021
Deposited On:23 Mar 2021 10:33
Last Modified:01 Apr 2021 16:38
Publisher:Frontiers Research Foundation
ISSN:1662-5161
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fnhum.2021.623766
PubMed ID:33716693
Project Information:
  • : FunderSNSF
  • : Grant ID100014_146542
  • : Project TitleBehavioral, functional, and structural plasticity of spatial memory in old age
  • : FunderSuzanne and Hans Biäsch Foundation for Applied Psychology
  • : Grant ID2012/7
  • : Project Title
  • : FunderVelux Stiftung
  • : Grant ID369
  • : Project Title

Download

Gold Open Access

Download PDF  'Object-Location Memory Training in Older Adults Leads to Greater Deactivation of the Dorsal Default Mode Network'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 940kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)